
A cost-aware logical framework

Yue Niu

November 2, 2023

CONTENTS

Contents 1

1 Introduction 3
1.1 Dependent type theory for cost analysis . . . . . . . . . . . . . . . . . 4
1.2 Towards a cost-aware logical framework . . . . . . . . . . . . . . . . . 11
1.3 Analytic and synthetic theories of cost in type theory . . . . . . . . . 12
1.4 Thesis statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Analytic and synthetic cost structures 15
2.1 Analysis: cost-aware type theory . . . . . . . . . . . . . . . . . . . . . 15
2.2 Synthesis: a cost-aware logical framework . . . . . . . . . . . . . . . . 24

3 Proposed work 42
3.1 Metatheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Synthetic cost-aware denotational semantics . . . . . . . . . . . . . . 44
3.3 Denotational semantics in calf . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Case study: STLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Case study: MA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

1



CONTENTS 2

3.6 Case study: PCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.7 Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Bibliography 62
.1 Complete definition of calf . . . . . . . . . . . . . . . . . . . . . . . . 69



chapter 1

INTRODUCTION

(1∗1) Among formal codifications of mathematics, dependent type theories stand
out because they furnish simultaneously the substrate of constructions and the
logical language governing those constructions. In type theory constructions are
referred to as terms or elements while specifications are referred to as types. It
is customary to write a : A to mean that a is an element of the type A, i.e. a is
a construction satisfying the specification A. In type theory, dependency is used
to express the notion of families; in particular a type family is a family of types
indexed in terms of a given type. An example of a type family is the family of
vectors vecA : N→ Type where each fiber vecA(n) classifies sequences of type A of
length n : N.

(1∗2) In type theory the fundamental property of type equality is expressed by the
rule of conversion: if A and B are equal types, then any element of A is an element
of B, and vice versa. While type equality is often purely syntactic in non-dependent
type theories, the situation is more complicated in dependent type theory because
type equality is intertwined with the equality of terms. In the case of length-indexed
sequences vecA, the types vecA(n) and vecA(m) classify the same sequences just in
case that n and m are equal as elements of N. Because vec(n+m) and vec(m+ n)
should always classify the same elements, equality here refers to the extensional
equality specification, i.e. n and m are equal when they denote the same number.

(1∗3) The mathematically natural notion of equality at higher types is the equality
of behavior or input-output pairs. This is usually presented in type theory as the
rule of function extensionality:

FunExt
Γ, x : A ⊢ f(x) =B g(x)

Γ ⊢ f =A→B g
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Consequently, constructions in type theory (such as type families) must respect the
extensional/behavioral equality of functions. For instance, because insertion sort
and merge sort are both sorting algorithms, they are equal as functions of type
list→ list and thus indistinguishable in type theory.

1.1. DEPENDENT TYPE THEORY FOR COST ANALYSIS

(1.1∗1) Applying the type-theoretic lens to computer science, constructions are
rendered as programs and the logical language becomes the language of program
specifications. As discussed in (1∗3), one naturally speaks of extensional/behavioral
equalities in dependent type theory. Thus, in the context of programs one obtains
an equational theory for studying program behavior. However, programs differs
from ordinary mathematical structures because it is common to speak of different
programs that are extensionally equal.

(1.1∗2) The sense in which “equal” programs can be different may be traced back
to Frege’s analysis of sense and reference. Put crudely, Frege observes that although
both the “morning star” and the “evening star” refer to the same celestial body, they
are different modes of presentation and thus differ in their senses. Frege’s observation
highlights a similar phenomenon in the context of programs: as we mentioned in
(1∗3), although both insertion sort and merge sort are sorting algorithms (and
thus extensionally equal), they evince different presentations that induce the same
behavior, i.e. they possess different intensional structures.

(1.1∗3) An example of an intensional property is the cost of a program, which is
an aspect of programs usually not amenable to direct investigation in dependent
type theories. The obstruction stems from two conflicting constraints: on the
one hand, one would like to accommodate as many extensionality principles as
possible for ordinary mathematical reasoning; on the other hand, the addition of
such principles (e.g. beta equivalence) undermines the cost structure of programs.
To see this, consider a hypothetical function cost : bool→ C that assigns to each
input computation its induced cost. Observe that there can only be two different
possible costs ctt, cff ∈ C in the image of cost corresponding to ctt := cost(tt) and
cff := cost(ff). But we undoubtedly want the ability to observe two distinct costs
for two boolean computations that both result in tt!

(1.1∗4) In response to the problem in (1.1∗3) we may dispense with equiva-
lences induced by computation. Consequently cost is not restricted to two possible
outcomes because we do not necessarily have e.g. (λx. tt) ⋆ = tt. However, type
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dependency greatly complicates the usability of the resulting theory because the
equality of types is intertwined with equality of computations. In practice one wants
as many equalities as possible to be discharged automatically as a consequence of
computation; for instance it would be impractical if the equality of the propositions
isEven(1 + 1) and isEven(2) required a manual proof that needs to be transported
at the use sites.

(1.1∗5) One possibility out of this dilemma is to eschew dependency, thereby
trivializing the equational theory of types. Indeed, many current type-theoretic
approaches [HDW17; Çiç+17; WWC17] to cost analysis employ simple type systems
or refinement type systems. However, the paucity of the specifications available in
these frameworks precludes analyses of algorithms that depend on sophisticated
behavioral invariants of the data structures involved. For instance, to prove the
quadratic cost bound for insertion sort, one has to know that the recursive call
preserves length — an extensional property of endofunctions on lists that follows
from the fact that insertion sort is a sorting algorithm. In general, we see that cost
analysis depends on the behavioral/extensional properties of the programs and data
structures involved; thus the lack of an equational theory means that simple type
systems cannot provide a foundational account of cost analysis.

1.1.1. Operational notions of cost.

(1.1.1∗1) What is the cost of a program? One way to study the dynamic behavior
of programs is by means of an operational semantics; thus, it is natural to define
cost based on the operational behavior of programs. Following Plotkin [Plo81], a
structural operational semantics (SOS) is a transition system (S, 7→) where S is the
set of possible states (in our context program states) and 7→ ⊆ S × S is a relation
on states. It is usually customary to distinguish a set of final/terminated states
Ω ⊆ S, so that s ∈ Ω denotes a terminal program. We define a transition step to
be a pair (s, s′) such that s 7→ s′.

For deterministic transition systems (meaning that for any s there is at most
one s′ such that they form a transition step), one may define a partial function
cost : S ⇀ N that assigns to a program s the number of transition steps it takes to
reach a terminal state s′ ∈ Ω or undefined if no such state exists.

(1.1.1∗2) The definition of cost proposed in (1.1.1∗1) is simple to work with, but
a bit more flexibility is desirable for certain applications. For instance, one may
only care about the occurrence of a subset of the transition steps (e.g. only function
applications), a situation best encoded by starting from a natural semantics [Kah87]
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or big-step semantics. In essence, natural semantics sweeps away some implementa-
tion details of the SOS in the form of a evaluation relation ⇓ ⊆ S × Ω that directly
relates a program to its terminal state. For many languages, a standard result
[Har16] relates these two notions of operational semantics: s 7→∗ s′ and s′ ∈ Ω if
and only if s ⇓ s′, where 7→∗ is the reflexive-transitive closure of 7→.

(1.1.1∗3) One may endow natural semantics with the cost structure of programs in
the style of Blelloch and Greiner [BG95], resulting in the notion of a cost semantics
for a language. In a cost semantics the evaluation relation is upgraded to a ternary
relation ⇓ ⊆ S × C× Ω such that s ⇓c s′ means that s evaluates to s′ using c ∈ C
units of cost. Observe that a cost semantics may be parameterized over a choice for
the cost structure C. Because nearly all programming languages come equipped
with the ability to compose computations, the cost structure needs to admit the
structure of a semigroup (C,+) at the minimum. In practice, C is almost always
required to form a monoid (C,+, 0) as well.

(1.1.1∗4) One can further increase the granularity of the cost structure of programs
by introducing cost annotations [Hof19]. Here the idea is to allow the programmer
to indicate where cost should be incurred in a program. Concretely this may be
achieved via an operational semantics 7→ ⊆ (N× S)× (N× S) that is instrumented
with a cost counter that is incremented by tick(q):

(p, tick(q)) 7→ (⋆, p+ q)

Because the purpose of tick(q) is to record the incurrence of cost, its behavior is
trivial.

(1.1.1∗5) While notions of program cost based on operational semantics is natural
and admit (in)equational theories à la contextual equivalence, the resulting theory
is not optimal for actually proving program equivalences or cost bounds. Indeed
practitioners usually work with some form of upgraded logical equivalence that
takes into account cost information [Çiç+17]. Although logical equivalence/logical
relations are indispensable for studying the metatheoretic properties of a language,
they do not provide a compositional theory for reasoning about cost, as stating or
proving properties about open terms requires one to explicit quantify over closing
instances. As we will discuss in Section 1.1.4, in a compositional theory of cost
one views cost not as properties of raw programs but as structures attached to
equivalence classes of program behavior.
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1.1.2. Cost monads.

(1.1.2∗1) A compositional notion of cost well-adapted for type-theoretic manip-
ulation can be gleaned from the practice of program profiling/instrumentation.
More precisely, to profile/instrument is to embed an ordinary program in a cost
monad C × −, where C encodes the cost structure as a monoid (C,+, 0).1 An
instrumented/cost-aware program is a pair of the form (c, e) : C× A such that c is
the cost assigned to the computation e : A. The monadic structure is given by the
monoid structure of C:

ret : {A} A→ C× A

ret(a) = (0, a)

bind : {A,B} CA→ (A→ CB)→ CB

bind((c, a), f) = let (c′, b) = fa in (c+ c′, b)

(1.1.2∗2) The setup described in (1.1.2∗1) is a delicate arrangement because cost
monads expose too much implementation detail: a cost-aware function finst : C×A→
C×B may simply ignore the cost component of its input. More importantly, one
may define exotic programs — programs that have no coherent underlying behavior,
and therefore cannot be said to be instrumented versions of an ordinary program.
For instance, the following program chooses its behavior based on whether the input
cost is zero:

f : N× A→ N× bool
f(0, a) = (0, tt)

f(suc(n), a) = (0,ff)

We say an encoding of cost-aware programs is safe when it is not possible to express
such exotic programs. Put another way, the safety of an instrumentation of cost
ensures that the intension/cost structure of programs do not interfere with their
extension/behavior.

(1.1.2∗3) Although cost monads should not be used directly by users of a cost-
aware programming language, they can be the target of a cost-preserving translation
of a source language [Kav+19]. Safe encoding of cost structure follows from the fact
that exotic programs lie outside the image of this translation.

1A cost monad induced by a monoid C is just the writer monad induced by C.
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(1.1.2∗4) We may hide the implementation of cost monads by working with an
abstract monadic language for computational effects à la Moggi. The transparent
definition of the cost monad C×− is replaced by a unary type constructor C equipped
with the monadic operations of ret : {A} A→ CA and bind : {A,B} CA→ (A→
CB)→ CB. There are several ways of integrating the cost effect into this monadic
language; for instance we may add a computation inc : {A} C→ CA→ CA that
increments the cost of a computation by a given cost. The semantics of the monadic
language of cost effects is given by the Kleisli category associated with the cost
monad. Consequently one obtains the expected commutation laws enjoyed by the
transparent definition of cost monads; for instance in addition to the monad laws
we have the following equation that expresses that inc commutes with bind:

bind(inc(c, e), f) = inc(c, bind(e, f))

The benefit of working in an abstract monadic language is that it is no longer
possible to define exotic programs in the sense of (1.1.2∗2): one may not observe
the cost component of a computation e : CA.

1.1.3. The CBPV decomposition of cost structure.

(1.1.3∗1) Although monadic cost effects as described in (1.1.2∗4) are sufficient
for reasoning about cost in a simply-typed setting, they do not integrate well into
dependent type theory. One way to incorporate cost effects with type dependency is
the ∂cbpv calculus of Pédrot and Tabareau [PT19], a dependent version of Levy’s
call-by-push-value (CBPV) language. The primary feature of CBPV is that one
maintains a dichotomy of values and computations at both the term and type level.
The intuition is that computation types classify possibly effectful operations (such
as incurring cost) while value types classify inert terms, a situation that Levy sums
up as “a value is, a computation does”.

(1.1.3∗2) The perspective of cost as an effect in CBPV was employed by Kavvos
et al. [Kav+19] to formalize the method of recurrence extraction as a cost-preserving
translation in the sense of (1.1.2∗3). In this context cost is implemented by adding
a single primitive effect chargeX(c,M) to the CBPV base language that may be read
operationally as “charge c units of cost and continue as M”. Notice the similarity
between charge and inc as described in (1.1.2∗4); the difference is that charge
is defined at every computation type X. As we see in (1.1.3∗3), incA may be
recovered in the CBPV setting as chargeF(A).



chapter 1. INTRODUCTION 9

(1.1.3∗3) In the categorical semantics of CBPV, value types are interpreted as
ordinary sets and computation types are interpreted as objects in the Eilenberg-
Moore category associated to the cost monad C×− induced by a given monoid C;
in other words a computation type X is interpreted as an algebra (|X|, αX) over
C×−. The value-computation dichotomy is bridged by a free-forgetful adjunction
F ⊣ U in which the left adjoint sends a set A to the free C×−-algebra on A and
the right adjoint forgets the algebra structure of a given algebra (|X|, αX). The
connection between the CBPV decomposition of the cost effect to the cost monad
set up of (1.1.2∗1) can be seen by considering the associated Kleisli category, which
may be defined as the full subcategory of the Eilenberg-Moore category spanned
by the free C×−-algebras. Consequently, the equational theory of cost monads is
inherited by the free computations in CBPV, i.e. computations of the form F(A).

1.1.4. Property vs. structure.

(1.1.4∗1) We see that operational notions of cost are not well-behaved in type
theory because the tradition of operational semantics construes cost as a property
of raw terms, a notion that ceases to exist inside type theory. On the other hand,
the perspective of cost monad or cost effects renders cost as structures attached
to equivalence classes of typed terms, a concept that is well-defined and enables a
compositional theory of cost. The observation that notions ill-posed as properties
can be objectified as structures is by now common in type theory research [SH21;
AK16; SA21; Coq19]; for instance, one of the ideas employed in the normalization
proof for cubical type theory [SA21] is to dispense with the notion of normal forms as
properties of raw terms and instead view them as structures attached to judgmental
equivalence classes of typed terms. In the context of cost analysis, we see that the
move from properties to structures addresses the problem in (1.1∗3): with both
cost monads and cost effects it is not the case that the judgmental equivalence class
of computations of type bool consists of only tt and ff.

1.1.5. Adequacy for cost.

(1.1.5∗1) Uniform vs. non-uniform cost models. Notions of cost derived from
operational semantics as in Section 1.1.1 may be referred as uniform/language-level
cost models in which the cost of a particular program construct is uniform across
different algorithmic problems. In contrast, cost monads (Section 1.1.2) and cost
effects (Section 1.1.3) naturally support non-uniform/algorithm-specific cost models
in the sense that there is no inherent association of cost to program constructs;



chapter 1. INTRODUCTION 10

rather the cost model is defined by the user of the framework and may vary across
different problems.

It is helpful to identify the uniform and non-uniform models as meaningful in
their own contexts. For the purposes of algorithm analysis it is clearly preferable to
work inside a framework that allows for different cost models for different classes of
problems; cost models in this sense cannot be detected at the level of operational
semantics — how would one delineate a comparison or edge insertion operation?
On the other hand, it is ill-formed to state theorems relating the cost semantics of
different languages such as Kavvos et al. [Kav+19] with respect to a non-uniform
cost model. However, we observe that by definition a uniform cost model is just
an instance of a non-uniform model. Consequently, a language that supports a
non-uniform cost model may be seen as the target of a cost-preserving translation
of a language paired with a uniform cost model, a result known as an adequacy
theorem.

(1.1.5∗2) Because both cost monads and cost effects possess compositional equa-
tional theories in the sense of (1.1.1∗5), they constitute a form of cost-aware
denotational semantics. Thus one may connect the uniform cost model induced
by an operational semantics with the non-uniform cost model given by cost mon-
ads/cost effects via a variant of the classic adequacy theorem of Plotkin [Plo77].
Such a theorem is proven in the case of cost effects by Kavvos et al. [Kav+19]; more
specifically, op. cit. prove a bounding theorem which states that one may extract
from a PCF program e a semantic recurrence erec such that the operational cost of
e is the same as the denotational/equational cost expressed by erec.

(1.1.5∗3) In Kavvos et al. [Kav+19] the bounding theorem is proven as a metathe-
orem relating two different languages. In a sufficiently expressive framework this
metatheorem may be stated internally. When cost-preserving translations may be
deduced as internal theorems, one can work with uniform cost models in a cost
analysis framework that supports non-uniform cost models via the translation.

(1.1.5∗4) An adequacy result of the form described in (1.1.5∗2) may be appropri-
ately characterized as a relative adequacy theorem because it is a statement about
a cost semantics relative to another cost semantics (given by operational semantics).
If the legitimacy of the operational notion of cost is in doubt, one may prove another
adequacy theorem showing that the operational notion of cost may be realized via
a scheduler on a given (abstract) machine model; a result of this form is generally
referred to as a Brent-type theorem [Har12].
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1.2. TOWARDS A COST-AWARE LOGICAL FRAMEWORK

(1.2∗1) What is missing from extant type theories dealing with cost analysis is
the combination of composition, safety in the sense of (1.1.2∗2), and the ability
to express reasoning used in informal algorithm analysis (1.1∗5). On the one
hand, frameworks specifically designed for cost analysis such the various linear
and refinement type systems [HAH12; WWC17; Raj+21] support composable cost
bounds and are safe by design because cost structure is categorically isolated from
programs. However, these systems do not consider program equality, a specification
that is indispensable for the mathematical development of algorithm analysis.

On the other hand, one may work with libraries built on top of dependent type
theories [HVH19; Dan08] that encode cost structure using some variation of the
cost monad (1.1.2∗1). By working inside dependent type theory one automatically
has an equational theory, but as discussed in (1.1.2∗2) the cost monad does not
provide a strong enough abstraction to rule out exotic programs. In light of recent
work on integrating dependent types with computational effects [PT19], one may
consider working with a dependent version of a CBPV language augmented with a
cost effect as in (1.1.3∗1). However, in both the monadic and CBPV setting it is
unclear how one may naturally express extensional equality of programs.

(1.2∗2) The work of Kavvos et al. [Kav+19] addresses some limitations mentioned
above by means of stratification: one translates the source program into a pro-
gram in the language of syntactic recurrences, which is further interpreted into
a semantic domain for mathematical manipulation. However, it is unclear how
behavioral/extensional reasoning fits into the stratified framework.

(1.2∗3) Extensional equality and the phase distinction. One of the innovations of the
present work is the observation that the safety aspect of the stratified framework of
Kavvos et al. [Kav+19] may be expressed internally in type theory by the notion of a
phase distinction. As I will discuss in Section 2.2.2, the (non)interaction between the
intensional and extensional parts of a cost-aware program is completely analogous
to the notion of the phase distinction in the theory of modules [HMM90]. While
the original phase distinction was concerned with breaking dependence between
dynamic and static components of program modules, the cost-aware setting evinces
the phase distinction of intension and extension: the cost component of programs
do not interfere with their behavior. In Section 2.2.3, I follow Sterling and Harper
[SH21]’s synthetic reconstruction of the phase distinction and equip type theory with
a program phase called the extensional phase in which cost structure is trivialized.
The extensional phase may be internalized into the extensional modality # that
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extracts the extensional/behavioral content of a given type. Consequently, one
may express the extensional equality of programs via the extensional equality type
#(e1 = e2).

(1.2∗4) Given the state of affairs summarized above, I propose to develop a cost
analysis framework satisfying the following criteria:

1. Composition: there is an equational theory of cost bounds.

2. Safety: it is not possible to express exotic programs (1.1.2∗2).

3. Cost structure should not interfere with “normal mathematics”; in particular,
one needs to be able to express the extensional equality of programs.

1.3. ANALYTIC AND SYNTHETIC THEORIES OF COST IN TYPE
THEORY

(1.3∗1) In response to (1.2∗4) I outline two approaches to a type-theoretic treat-
ment of cost analysis that we developed over the last several years [NH20; Niu+22].
In retrospect, the two approaches may be seen as an instance of the analytic-synthetic
dichotomy.

(1.3∗2) Analytic vs. synthetic theories. Often times a mathematical structure may
be profitably studied from two complementary perspectives. On the one hand, one
may employ an analytic viewpoint that emphasizes the construction of the desired
structure in terms of more primitive concepts. On the other hand, one may employ
a synthetic viewpoint that axiomatically characterizes the desired structure. The
prototypical theory evincing such a distinction is geometry: points and lines may
be viewed analytically as constructions using cartesian coordinates or synthetically
as primitive notions governed by certain axioms (e.g. Euclid’s postulates).

(1.3∗3) A recent instance of the analytic-synthetic distinction in the context of type
theory was exposed in Sterling and Harper’s synthetic treatment of logical relations.
Instead of defining logical relations from more primitive structures such as sets
and families, op. cit. observes that the essence of the method of logical relations
may be more directly appreciated by working in a theory in which everything is a
logical relation. The structure of logical relations (i.e. their syntactic and semantic
components) is governed by axioms akin to Euclid’s postulates for geometry.

(1.3∗4) Traditionally, the analytic viewpoint underlies computational type theories,
the most well-developed of which is the Nuprl family of type theories [All+06].
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Here the primitive concept is computation, which is usually given as a programming
language equipped with an operational semantics. Moreover, computation is the
substrate from which all other type-theoretic concepts such as types/specifications,
programs satisfying a specification, equality of programs and types are constructed.
We will explore and develop this idea into a full-fledged type theory for cost analysis
catt in Section 2.1. As a computational type theory built on top of an operational
semantics, catt adopts a uniform cost model in the sense described in (1.1.5∗1).

(1.3∗5) On the other hand, we may begin with the synthetic perspective by viewing
type theories as generalized algebraic theories. Consequently, the meaning of type
connectives is not explained via more primitive means (e.g. through computation
as in computational type theories); rather, one views the rules of type theory as
synthetically characterizing the desired properties of various type connectives. In
constrast to the analytic perspective (1.3∗4), the algebraic view of type theory
naturally supports a compositional equational theory, which is also compatible with
the integration of cost structure using either the monadic approach (1.1.2∗4) or
the more fine-grained CBPV presentation (Section 1.1.3).

In Section 2.2 we build on the dependent CBPV calculus of Pédrot and Tabareau
and develop a cost-aware logical framework calf that implements cost structure as
a computational effect. As we discuss in (2.2∗2) calf supports a non-uniform cost
model; I conjecture that calf is expressive enough to embed uniform cost models in
the sense of (1.1.5∗3) and propose to use calf to prove internal adequacy theorems
in Section 3.2, leading to the view of calf as a framework for cost-aware denotational
semantics. As foreshadowed in (1.2∗3), extensional equality is expressed in calf by
means of an extensional phase that is directly analogous to the notion of the static
phase in the theory of ML modules; as a consequence calf evinces a new phase
distinction of intension/cost and extension/behavior.

1.4. THESIS STATEMENT

Emerging from the synthesis of computational effects and phase-distinct
programming in dependent type theory is a cost-aware logical frame-
work calf that furnishes a language for equational reasoning of both
cost/intensional and behavioral/extensional structures. A framework of
this kind unifies three previously distinct roles: a cost-aware program-
ming language, a mathematical domain for algorithm analysis, and a
metalanguage for cost-aware denotational semantics. Consequently, calf
is a natural mathematical space in which to study cost-aware computation
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at all scales, ranging from algorithm specification and verification to the
cost semantics of programming languages.



chapter 2

ANALYTIC AND SYNTHETIC COST
STRUCTURES

2.1. ANALYSIS: COST-AWARE TYPE THEORY

2.1.1. Computational type theories.

(2.1.1∗1) The fundamental ethos behind the computational type theories of Martin-
Löf [Mar79] and Constable et al. [Con+86] is the idea that the meaning of type
connectives is defined via computation. It is in this sense that computational type
theories may be characterized as analytic theories: as the object of study, type
structure arises directly as an extrinsic property of the prior notion of computation.
The explanation of type-theoretic constructions in terms of computation is known
as Martin-Löf’s meaning explanation of type theory.

(2.1.1∗2) In the context of computational type theory the meaning explanation is
built on top of a programming language equipped with an operational semantics
(for instance as described in (1.1.1∗1)), and the judgmental structure reflects
programming concepts such as when a computation represents a specification (i.e.
a type) and when a computation satisfies a given specification.

(2.1.1∗3) According to the meaning explanation, to know that a judgment holds
is to know that there is a direct proof of the judgment. Applied in a computational
setting, this means that e.g. a program is a specification just when it computes
to a canonical specification, i.e. a canonical type. The idea of canonical objects
has a special status in the cost-aware setting because they correspond to values or
programs (and specifications) with no associated cost.

(2.1.1∗4) Martin-Löf’s meaning explanation of type theory is structured around
four forms of judgment: A is a type, M is a term of A, A and A′ are equal types,

15
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and M and M ′ are equal terms of A, displayed as follows using shorthand notations:

A type M ∈ A

A
.= A′ M

.= M ′ ∈ A

Examining the meaning-theoretic structure of each reveals the central importance
of computation. For instance, to have a proof of the typehood judgment A type is
know that A computes to a canonical type A0, i.e. a partial equivalence relation
on programs. Furthermore, presupposing that A type (so that A evaluates to a
canonical type A0), to have a proof of the membership judgment M ∈ A is to know
that M computes to a canonical value V and that V is related to itself by the
partial equivalence relation associated with the canonical type A0. The fact that
canonical types are associated with PERs allows us to explain the equality of terms
at a given type.

(2.1.1∗5) The definitional principle associated with the meaning explanation of
computational type theories is a well-known instance of induction-recursion, which
is a principle that allows one to define an inductive structure and a recursive
function out of that structure simultaneously. Here, one may render the judgment of
typehood and membership as a pair (U, T ) defined by induction-recursion Dybjer and
Setzer [DS04] in which U : Tm→ Set classifies the set of evidence for establishing
typehood and T : (e : Tm) → U(e) → Tm → Set classifies the set of evidence for
establishing membership given the computability data of a type. The purpose of
induction-recursion is to allow the simultaneous definition of the inductive set U(e)
and the recursive function T (e) out of U(e) for a given term e.

(2.1.1∗6) On the other hand researchers in the Nuprl school justify Martin-Löf’s
meaning explanation for computational type theories by various forms of fixed-point
constructions over a “lookup table” [Har92; All87]. The idea is to encode the
judgmental structure of a type theory as a relation τ on Tm× Tm× P(Tm× Tm)
so that τ(A,A′, φ) roughly means that A and A′ are equal canonical types equipped
with the membership relation φ.

Because every powerset with the subset ordering has the structure of a complete
lattice, one may use the Knaster-Tarski theorem to construct a type system as the
fixed-point of a monotone function on relations. For instance, a type theory with Π
types and the natural numbers may be defined as the fixed-point of the following
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monotone operator Φ (following the notation of Angiuli [Ang19]):

Nat : P(Tm× Tm× P(Tm× Tm))→ P(Tm× Tm× P(Tm× Tm))
Nat(τ) = { (nat, nat, µα. { (zero, zero) } ∪ { (suc(M), suc(M ′)) |M ∼M ′ ∈ α }) }

Fun : P(Tm× Tm× P(Tm× Tm))→ P(Tm× Tm× P(Tm× Tm))
Fun(τ) = { (Π(A, a.B),Π(A′, a.B′), φ) |

∃α. τ ⊨ A ∼ A′ ↓ α
∧ β. τ ⊨ α�B ∼ B′ ↓ β
∧ φ = { (λx.M, λx.M ′) | α�M ∼M ′ ∈ β }}

Φ(τ) = τ ∪ Nat(τ) ∪ Fun(τ)

A given relation τ is a type system when it satisfies some intuitive coherence
conditions.1 Given a type system τ , one may build a computational type theory by
defining all the required judgmental structure relative to τ . For instance, to know
that A type is to have that τ ⊨ ∃α.A ∼ A ↓ α, i.e. A computes to a canonical type
that is assigned some membership relation α.

(2.1.1∗7) The construction of a type system given in (2.1.1∗6)may seemed involved,
but the general method scales to model more complicated computational phenomena
such as guarded recursion [SH18] and (cartesian) cubical structures [Ang19].

2.1.2. Meaning of cost structure.

(2.1.2∗1) In this section we recount the essential ideas behind catt (cost-aware
type theory) [NH20], a computational type theory in the Nuprl tradition that
furnishes a formal framework for developing cost-aware program verification.

(2.1.2∗2) Cost structures, analytically. Because both Martin-Löf’s meaning ex-
planation and the construction of computational type theories are built on top
of operational semantics, the cost structure of programs was already present and
lurking behind the scene in every judgment of type theory. For instance, implicit in
every proof of the judgment A type is the knowledge that A computes to a canonical
type A0 while incurring some cost c. The essential idea of catt is to make the
presence of cost structure explicit and replay the constructions in Section 2.1.1 to
obtain a cost-aware computational type theory.

1See Angiuli [Ang19] and Niu and Harper [NH20]
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(2.1.2∗3) Cost structure over an operational semantics. Given any small-step
structural operational semantics 7→, we may induce a cost semantics on programs in
which a program M has cost c : N whenever M 7→c V for a value V . Cost bounds
are defined analogously: the cost of a program M is bounded by c′ : N whenever
M 7→c V , V is a value, and c ≤ c′.

(2.1.2∗4) Although (2.1.2∗3) provides a good notion of (metatheoretic) cost
structure, one needs to be able to speak about cost structure internally. This means
that cost structure should be given by programs and that we need to judge when a
given program is a cost bound.

(2.1.2∗5) Cost bounds are just natural numbers, and so a program P is a cost
bound just when P ∈ nat. As we will see in (2.1.2∗6) it will be important that
nat classifies numerals rather than arbitrary computations.

(2.1.2∗6) Cost-aware judgments in catt. To expose the cost structure of programs,
we define two new forms of judgments that express the idea that programs satisfy
specifications within the constrains of a cost bound:

M ∈ A [P ] M
.= M ′ ∈ A [P ]

We may endow these judgment forms with meaning-theoretic structure: to know
that M ∈ A [P ] is to know that (presupposing P is cost bound, i.e. P ∈ nat)

1. M ⇓c V

2. P ⇓ p

3. c ≤ p

4. V ∈ A

Similarly, the cost-aware equality at a type is defined by requiring that both programs
are bounded by the given cost bound (and satisfies the given specification).

Note that because we have required nat to classify strictly the numerals, it is
always possible to “read off” the underlying actual natural number by evaluating
the cost bound.

2.1.3. Cost-aware type theory.

(2.1.3∗1) The programming language PL. Underlying catt is the programming
language PL, essentially a version of PCF [Plo77] equipped with a call-by-value
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operational semantics, governed by two standard relations over untyped terms
7→ ⊆ Tm×Tm and val ⊆ Tm. Observe that in this setting canonical proofs/members
in the sense of the meaning explanation are drawn from the the subset val of values
or terminal programs.

(2.1.3∗2) The fact that we consider a call-by-value semantics is somewhat forced
by considering the semantics of open judgments. Without drastically altering the
structure of hypothetical judgments, it is not possible to characterize the cost
bound of an open term if one is allowed to substitute arbitrary computations
for variables. For instance, consider an open term x : A ≫ N ∈ B, and write
JAK := {M |M ∈ A } for the closing instances for the free variable x : A. We
see that the cost of N cannot be characterized by a function JAK→ nat: without
knowing the cost of a given computation M ∈ A, we cannot in general determine
the cost of the composition [M/x]N ∈ [M/x]B.

(2.1.3∗3) Consequently, the notion of a canonical proof or canonical member as
foreshadowed in (2.1.1∗3) is distinguished in catt because they span the domain
of quantification for open or hypothetical judgments. To distinguish a canonical
member from an arbitrary one, we write V ∈0 A for V ∈ A whenever V is a value.

(2.1.3∗4) In the absence of a modal account of computations in the style of Harper
[Har20], one may only form fixed-points at function types in PL, which has the
following operational behavior when applied to a value:

V val
fun(x.y.M)V 7→ [fun(x.y.M)/y, V/x]M

(2.1.3∗5) Cost-aware function types. Governing the recursive functions is the
fundamental unit of cost refinement in catt, the cost-aware function type written as
(a : A)→ B [P ]. Intuitively, a canonical member of the specification (a : A)→ B [P ]
is a (recursive) function fun(x.y.M) such that any application instance is cost
bounded in the sense described in (2.1.2∗6). Explicitly, this means we would expect
that f ∈ (a : A) → B [P ] whenever [fun(x.y.M)/y, V/x]M ∈ [V/a]B [[V/a]P ] for
all V ∈0 A. Crucially the cost bound P is allowed to vary in the input, thereby
forcing us to associate judgmental structure to the notion of a cost bound.

(2.1.3∗6) Hypothetical judgments. The general structure the cost-aware function
type connective internalizes is that of the hypothetical cost-aware judgments:

Γ≫M ∈ A [P ] Γ≫M
.= M ′ ∈ A [P ]
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In the judgments above the cost bound is allowed to reference the entire context.
As mentioned in (2.1.3∗2) the hypothetical judgments quantify over substitution
instances valued in (equal) canonical members, and as usual the meaning of such
judgments is given by universal quantification over equal substitution instances for
the context.

(2.1.3∗7) Constructing the type system. As described in (2.1.1∗6), the judgments
of a computational type theory is defined relative to a type system τ . The type
system relative to which judgments of catt differs from the fixed-point construction
of standard computational type theories (for instance the “Idealized Nuprl” of
Angiuli [Ang19]) in two places. First, as discussed in (2.1.2∗6) we have to arrange
the construction so that the type of natural numbers classify numerals. Concretely,
this just means swapping out the member relation out for ω, the diagonal set over
the numerals:

Nat : P(Val× Val× P(Val× Val))→ P(Val× Val× P(Val× Val))
Nat(τ) = { (nat, nat, ω) }

Secondly, we have to define a new (monotone) operator on type systems that adds
in the cost-aware function types (2.1.3∗5):

Fun : P(Val× Val× P(Val× Val))→ P(Val× Val× P(Val× Val))
Fun(τ) = { ((a : A)→ B[P ], (a : A′)→ B′[P ′], φ) |

∃α. τ ⊨ A ∼ A′ ↓ α
∧ β. τ ⊨ α�B ∼ B′ ↓ β
∧ α� P ∼ P ′ ∈ ω

∧ φ = { (fun(x.y.M), fun(x.y.M ′)) | α� [fun(x.y.M)/y]M ∼ [fun(x.y.M ′)/y]M ′ ∈ β[P ] }}

In the above the notation α�M ∼M ′ ∈ β[P ] expresses a functionality condition,
which states that given inputs V, V ′ such that α(V, V ′), [V/a]M and [V ′/a]M ′ are
behaviorally equivalent up the specification βV,V ′ and cost bound P [V/a].

(2.1.3∗8) What is noteworthy of the construction of cost-aware functions outlined
in (2.1.3∗7) is the fact that the functionality of recursive functions fun(x.y.M)
is stated in such a way that only computability of the first argument is assumed
and there are no assumptions about the computability of the recursive argument.
Compared to the syntactic typing discipline of recursive functions, the membership
relation assigned to cost-aware function types appears to be too strong to be useful
in practice. However as we will explore in Section 2.1.4, one may exploit cost
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structure to derive a useful rule about cost-aware function types that simultaneously
establishes membership and cost refinement.

2.1.4. Cost refinement rules.

(2.1.4∗1) Confronted with the lack of useful computability data (2.1.3∗8), we
realized that the additional structure of the cost bound provides enough information
for us to derive strong reasoning principles for the cost-aware function type. First,
we see that given a type (a : A) → B [P ], the cost bound P induces an ordering
≺ on the arguments defined by V ≺P W := [V/a]P < [W/a]P . The idea is that
in order for a recursive function fun(x.y.M) to adhere to a cost bound P on a
given argument V , the associated recursive calls can only be made on arguments
V ′ such that V ′ ≺P V . In other words, we may assume that the recursive function
binding behaves correctly for arguments less than the current argument on the
cost ordering ≺. Because function application consumes one step according to the
operational semantics, this is the strongest assumption one may have about the
recursive binding.

(2.1.4∗2) This leads to a principle one may refer to as induction on cost or cost
bound induction, and a variation of this idea also appears later in the encoding of
(total) general-recursive programs in calf .

(2.1.4∗3) Going back to the question of how one can prove that a function inhabits
a cost-aware function type, a direct reading of the semantics of cost-aware function
types would lead to the following introduction rule:

A
.= A′ type

a : A≫ B
.= B′ type

a : A≫ P
.= P ′ ∈ nat

a : A≫ [fun(x.y.M)/y]M .= [fun(x.y.M ′)/y]M ′ ∈ B [P ]
fun(x.y.M) .= fun(x.y.M ′) ∈0 (a : A)→ B [P ]

In general the rule displayed above is not very useful as an introduction rule because
nothing is known about the recursive binding. What cost bound induction buys us
is the additional assumption in the last premise stating that the recursive argument
satisfies the stated specification for arguments that induce strictly less cost. This is
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rendered as the the following lemma:

A
.= A′ type

a : A≫ B
.= B′ type

a : A≫ P
.= P ′ ∈ nat

a : A, f : (a : { a′ | a′ ≺P a })→ B [P ]≫M
.= M ′ ∈ B [P ]

fun(a.f.M) .= fun(a.f.M ′) ∈0 (a : A)→ B [P ]
(Π�−I)

Because the extra data on the admissible arguments is a proposition, it is stated
using the subset connective in the above, but a presentation using Σ-types is also
possible.

(2.1.4∗4) The cost refinement Π� − I reveals a serendipitous principle distinctly
available in the cost-aware setting:

Cost structure realizes efficient algorithms, and efficient algorithms has
good cost structure.

Here I say “to realize” to mean to demonstrate or prove the existence of a realizer of
a given cost-aware specification. Because one is making explicit the cost structure
of programs, the induction principle associated with recursive functions may be
strengthened appropriately by limiting the admissible arguments to the recursive
call.

The fact that cost structure induces a strengthened refinement rule is an instance
of the difference between safety and liveness properties. In the context of catt,
while it may be difficult to show that a program merely terminates (a liveness
property), it is much easier to check whether or not it terminates with a given cost
bound (a safety property). In a purely behavioral setting one has to decide whether
it is worth giving an explicit description of the data inherit in termination proofs.
In contrast the raison d’être of catt forces us to always be explicit about the cost
structure in the specification, which is in turn used to show that candidate programs
satisfy cost-aware specifications.

(2.1.4∗5) The nature of program verification in catt is characteristic of com-
putational type theories in that it is based on an open-ended collection of proof
refinement lemmas. Aside from the new cost refinement rule Π� − I, catt also
admits the standard syntax-directed lemmas governing the formation, introduction,
and elimination of the standard connectives including nat,Σ, subset, and extensional
equality. Here another workhorse lemma is the elimination rule for nat, which states
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that the cost of a case analysis is another case analysis:

...

V
.= V ′ ∈0 nat

p : eqnat(zero,M)≫M0
.= M ′

0 ∈ [zero/a]A [P0]
a : nat, p : eqnat(suc(a), V )≫M1

.= M ′
1 ∈ [suc(a)/a]A [P1]

ifz(V ){M0; a.M1}
.= ifz(V ′){M ′

0; a.M ′
1} ∈ [V/a]A [ifzV (suc(P0); a; suc(P1))]

In the above we have omitted the expected typing presuppositions.

2.1.5. catt as a cost analysis framework.

(2.1.5∗1) Using the rules highlighted in (2.1.3∗5) and (2.1.4∗5), I was able to
verify (by hand) a crude upper bound on Euclid’s algorithm for gcd. Although this
was a victory for us and demonstrated that one could use catt to do cost analysis
in theory, Euclid’s algorithm is likely the upper limits of what one can manage on
paper, and it was clear that we needed a mechanization of catt to handle bigger
case studies.

(2.1.5∗2) Around January of 2020 I begin mechanizing the core definitions and
construction of catt. After the better part of a year I formally verified Π� − I, the
distinguish rule in catt for typing recursive functions. However this is basically
the only rule I verified, and at this point I decided that formalizing any case study
would be too painful to carry out in the current formulation of catt.

(2.1.5∗3) What makes the practice of verification difficult in a by-the-books imple-
mentation of catt is not that there are no untyped computational principles à la
Howe [How89]. Indeed Niu and Harper [NH20] prove open head expansion for the
ordinary membership and typehood judgments; as far as the behavioral fragment
is concerned, it seems possible to extend this to an approximation relation as in
Sterling and Harper [SH18].

(2.1.5∗4) The predictable problem is the fact that cost reasoning is subequational,
thus ordinary equations do not apply directly to cost-aware judgments. What is
insidious is the interpretation of variables in catt. The fact that open judgments
only quantify over substitutions valued in values has some uncomfortable effects on
ordinary judgments such as Γ ≫ A type. For instance, consider the judgment a :
A≫ B type. Although any equal values V .= V ′ ∈0 A give rise to equal specifications
[V/a]B .= [V ′/a]B type, this does not hold for arbitrary equal instantiations M .=
M ′ ∈ A. In particular, it is not the case that ⟨M/a⟩B .= [V/a]B type given that
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M
.= V ∈ A and V ∈ val. As mentioned in (1∗2), type families should respect

extensional equality of their indices. However, the interpretation of variables as
values in catt results in a nonstandard version of type families and complicates the
development of ordinary mathematics.

(2.1.5∗5) Compounded with the general engineering efforts required to make im-
plementations of computational type theories in the Nuprl style ergonomic and
practical to use, by the latter half of 2020 I started thinking about cost analysis in
type theory from a different angle, this time with mechanization at the fore.

2.2. SYNTHESIS: A COST-AWARE LOGICAL FRAMEWORK

(2.2∗1) In this section I discuss the development of calf (cost-aware logical frame-
work), a dependent type theory with an intrinsic notion of cost structure and
cost-aware programs. At a high-level, calf resolves many of the problems we
encountered with catt and traditional accounts of cost structure in type theory
by synthesizing several recent techniques: dependent types with computational
effects [PT19], synthetic phase distinction/noninterference [SH21], and cost-aware
programming à la Niu and Harper [NH20].

(2.2∗2) As mentioned in (1.3∗5), in contrast to catt, we embrace an abstract
notion of cost in calf that is not necessarily tied to an operational semantics.
Following actual practice of algorithm analysis, we do not associate a particular
cost semantics to calf itself but instead promote the use of calf as a cost-aware
metalanguage for expressing algorithm-specific/non-uniform cost models in the sense
of (1.1.5∗1). We will discuss the connection between the traditional formulation of
cost given by an operational semantics and the non-uniform cost model of calf in
Section 3.2.

(2.2∗3) Ab initio we have set out to ensure that calf can be implemented on a
computer for the mechanization of large-scale verifications. This has been carried
out by the Cost Lab Refinement team (Jon Sterling, Harrison Grodin, and myself).
All the case studies we discuss in Section 2.2.9 are mechanically verified theorems
in the Agda proof assistant.2

2The source code is available at https://github.com/jonsterling/agda-calf.

https://github.com/jonsterling/agda-calf
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2.2.1. Cost as a computational effect.

(2.2.1∗1) As we discussed in (1.1.2∗2), while cost monads are unproblematic as
a denotational semantics for cost-aware programs, the semantic domain C×− is
not itself suitable for cost-aware programming because too much detail about the
implementation of cost structure is revealed. However, we can construct a suitable
syntax for cost-aware programming by considering the call-by-push-value structure
[Lev04] induced by the Eilenberg-Moore category associated with the cost monad.
Recall from our discussion in Section 1.1.3 that the language of CBPV is based
around the dichotomy of values and computations at the level of both terms and
types. In the Eilenberg-Moore model of CBPV, value types correspond to ordinary
sets while computation types are interpreted as algebras over the given monad.
Consequently value types and computation types are bridged by a free-forgetful
adjunction F ⊣ U in which the left adjoint sends a set A to the free algebra C× A

and the right adjoint forgets the algebra structure.

(2.2.1∗2) A cost-aware CBPV language. The semantic situation in (2.2.1∗1) then
justifies a new computation effect stepc(e) that incurs a cost c : C to the computation
e : X, complete with the expected coherence law stepc+d(e) = stepc(stepd(e)) that
combines multiple step’s using the monoid structure on C. Moreover we may
reify the free functor F as a type constructor with the following introduction and
elimination rules::

ret : {A} A→ F(A)
bind : {A,X} F(A)→ (A→ X)→ X

The interaction between return, sequential composition, and the cost effect is
characterized by the following equations:

bind/ret : bind(ret(a); f) = f(a)
bind/step : bind(stepc(e); f) = stepc(bind(e; f))

(2.2.1∗3) Equational theory for cost analysis. We observe that the equational
theory of CBPV furnishes a theory for cost analysis: a computation e : F(A) has
cost c : C whenever e = stepc(ret(a)) for some value a : A. This cost refinement is
captured by the following internal predicate:

hasCost(A, e, c) := Σa : A. e =F(A) stepc(ret(a))

Similarly, we may also define the refinement of cost bounds that allows for upper
bounds on cost. Cost analyses in calf revolve around cost refinements such as
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hasCost and syntax-direct refinement lemmas (2.2.6∗3) that express the cost bound
of a computation based on cost bounds of its constituent sub-computations.

Although program verification in calf looks superficially similar to that of catt,
the actual experience of proving cost bounds in calf critically differs from catt
because one can apply local equational reasoning. In other words one may use an
equation in any context whatsoever in calf . In contrast the cost-sensitive theorems
of catt are sub-equational. Moreover, catt suffers from a deficiency of equations
stemming from the coarse-grained type structure induced by the underlying call-by-
value language.

(2.2.1∗4) Effects and dependency. A subtle point is how to make sense of a
dependent bind operation. Consider a type family X : A→ U computations e : F(A)
and f : (a : A) → X(a). What should be the type of the sequential composition
of e and f? One answer is given by Pédrot and Tabareau [PT19], who develop a
dependent version of the classic CBPV calculus dubbed ∂cbpv in which there are
three sequencing operations. Aside from the ordinary non-dependent bind, one has
the dependent sequencing dbind and type-level sequencing tbind:

tbind : {A} F(A)→ (A→ U)→ U
dbind : {A,X} (e : F(A))→ ((a : A)→ X(a))→ tbind(e;X)

Building on this work we have developed calf as an extension to ∂cbpv.

2.2.2. Phase distinction revisited: intension vs. extension.

(2.2.2∗1) The fragment of calf described so far is sufficient for expressing the
notion of cost refinements. However as I have argued in (1.1∗5), to prove cost
refinements, one must also be able to express behavioral/extensional specifications.

(2.2.2∗2) In fact the intensional aspects of programs (e.g. cost) is already well-
studied in the structural proof theory and modal type theory community under
the guise of staged computation [DP99]. In this context the necessity modality
2 is used to capture the idea of staged computation; in particular, Davies and
Pfenning [DP99] notes that one may think of 2A as the type that classifies “codes”
or representations of terms of type A.

In his dissertation Kavvos carries out a detail investigation of a intensional type
theory (intensional PCF) based on this interpretation of the necessity modality.
Unfortunately Kavvos’s work ultimately shows that truly intensional operations
may only be effected on closed terms, which greatly complicates the integration of
dependent types and generally erodes the benefits of working type-theoretically.
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(2.2.2∗3) Around the beginning of 2021, Sterling observed that the problem I
encountered when trying to introduce intensional structures in dependent type
theory may be resolved using the same tools that Sterling and Harper [SH21]
developed to objectify and study the ML module system. The central difficulty
of prior work on expressing intensional structures through the necessity modality
is that judgmental equalities are removed in certain contexts; Sterling suggests
that the situation may be dually and more beneficially viewed as the addition of
equations that express extensional/behavior equality in certain contexts, which
is analogous to the erasure of dynamic components of a module structure in the
static phase in the theory of module systems. This led us to consider a new phase
distinction in the context of cost analysis, which is the phase distinction of intension
and extension.

2.2.3. Intension vs. extension: a new phase distinction.

(2.2.3∗1) In the tradition of ML module systems, a module is a composite structure
that has both a dynamic/runtime component and a static/compile time component.
The functional dependency of modules is managed through the notion of a module
functor, which is just a function between the corresponding module signatures
subject to the restriction that the static components may not depend on the
dynamic component coming from the domain signature. This restriction constitutes
the original phase distinction of the static and dynamic.

(2.2.3∗2) With a bit of squinting we see that the phase distinction is exactly
the safety property defined in (1.1.2∗2); we just make the following substitutions:
dynamic→ intension, static→ extension, and module functor → cost-aware function.

2.2.4. The language of phase distinctions.

(2.2.4∗1) As mentioned in (2.2.2∗3), Sterling and Harper promotes a type-theoretic
interpretation of the theory of module systems. In particular op. cit. presents a
synthetic reconstruction of the phase distinction of the static and dynamic. Briefly,
one may carve out the static phase of the module system by means of distinguished
proposition ¶St : Ω called the “static open”3; dynamic components of a module are
trivialized whenever a proof u : ¶St is present in the context.

(2.2.4∗2) In the setting of cost-aware programs we may make an entirely analogous
move and implement the extensional phase by means of a distinguished proposition

3An open in the sense of topos theory is a proof-irrelevant proposition in the internal type
theory of a topos.
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¶E : Ω called the extensional open. Whenever a proof of ¶E is available the cost
structure of programs is rendered trivial; in light of the effectful conception of cost
structure in (2.2.1∗2), this is expressed by the following rule:

step/¶E : {X, e} (u : ¶E)→ stepc(e) = e

Consequently the extensional part of any type may be extracted by the exten-
sional modality #, which is defined by exponential with the extensional open:
#A := (u : ¶E)→ A. For instance, we may prove the extensional-modal equation
#(insertionSort = mergeSort) and yet still be able to distinguish their costs outside
the extensional phase. As I will discuss in (2.2.6∗1), in calf one also reasons about
inequalities between cost bounds in the extensional phase: as we have observed
in (1.1∗5) cost analysis is dependent on extensional/behavioral properties of the
programs involved.

(2.2.4∗3) Conversely, we may use the intensional modality to seal away cost
structure that should be erased in the extensional phase. In type theory, the
intensional modality may be defined as the following quotient inductive type:

data  A where
η : A→  A

∗ : ¶E →  A

_ : Πa : A.Πu : ¶E.η (a) = ∗(u)

In categorical language, the above may be seen as the pushout of the projections
of A × ¶E. It is a bit more difficult to visualize the meaning of the intensional
modality, but one can imagine  A as identical to A except that it is trivial inside
the extensional phase, i.e. # A ∼= 1. A useful way to internalize this fact is the
phrase “the extension part of the intensional part is trivial”. In (3.2.3∗2) we will use
the intensional modality to state a cost-aware version of the Plotkin-type adequacy
theorem.

2.2.5. calf : a cost-aware logical framework.

(2.2.5∗1) Presenting type theory using logical frameworks. The fragments of calf
highlighted in Section 2.2.1 and Section 2.2.4 are pieced together into a type theory
as a signature in the logical framework of locally closed cartesian categories. This
departure from traditional presentations of type theory as derivations built over
raw terms is promoted by several recent threads of work [Uem19; SH21; GS20]. As
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argued by Sterling [Ste21], the study of type theories qua mathematical objects in
structured categories allows one to dispense with many technical difficulties when
defining models of “hand-baked” presentations of type theory. Indeed we will see in
Section 2.2.10 that this view of type theories enables one to easily define models of
calf .

(2.2.5∗2) Concretely, we work in a logical framework with a universe of judgments
Jdg closed under dependent product, dependent sum, and extensional equality. An
object theory (e.g. calf) is specified as follows:

1. Judgments are declared as constants ending in Jdg.

2. Binding and scope is handled by the framework-level dependent product
(x : X)→ Y (x).

3. Equations between object-level terms are specified by constants ending in the
framework-level equality type x1 =X x2.

The core constructs of calf are displayed in Fig. 2.1; the complete definition may
be found in Appendix .1.

Note that calf is parameterized in an arbitrary cost monoid (C, 0,+,≤) and the
predicate isOrderedMonoid encapsulates the ordered monoid laws. This allows us to
encode different abstract notions of cost structure; in particular we may instantiate
C as the parallel cost monoid to account for the parallel complexity of programs
(Section 2.2.9).

2.2.6. Interactive cost refinement in calf .

(2.2.6∗1) Extensional cost bounds. As a first attempt to generalize the hasCost
refinement from (2.2.1∗3), we may conjecture that a computation e : tm⊖(F(A)) is
bounded by c : C if e =tm⊖(F(A)) stepc

′(ret(a)) for some c′ ≤ c and a : tm+(A). While
this is a perfectly sensible definition, our investigations suggest it is more natural to
replace ordinary inequality ≤ with the extensional inequality #(c′ ≤ c). The use
of the extensional inequality in the IsBounded refinement reflects the intuition that
“costs don’t have cost”. More importantly, this arrangement grants one access to
the extensional fragment and the extensional properties therein when proving cost
refinements, which is essential for analyses of algorithms that depend on behavioral
invariants of data structures. For instance, the cost analysis of insertion sort depends
on knowing the invariant that sorting preserves length, a fact that follows from the
correctness of sorting that is readily available in the extensional phase.
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C : Jdg
0 : C
+ : C→ C→ C
≤ : C→ C→ Jdg

costMon : isOrderedMonoid(C, 0,+,≤)
step : {X : tp⊖} C→ tm⊖(X)→ tm⊖(X)
step0 : {X, e} step0(e) = e

step+ : {X, e, c1, c2}
stepc1(stepc2(e)) = stepc1+c2(e)

tp+ : Jdg
tm+ : tp+ → Jdg

U : tp⊖ → tp+

F : tp+ → tp⊖

tm⊖(X) := tm+(U(X))
ret : (A : tp+, a : tm+(A))→ tm⊖(F(A))

bind : {A : tp+, X : tp⊖} tm⊖(F(A))→
(tm+(A)→ tm⊖(X))→ tm⊖(X)

¶E : Jdg
¶E/uni : {u, v : ¶E} u = v

#J := ¶E → J
step/¶E : {X, e, c} #(stepc(e) = e)

#+ : tp+ → tp+

_ : {A} tm+(#+A) ∼= #(tm+(A))

eq : (A : tp+)→ tm+(A)→ tm+(A)→ tp+

self : {A} (a, b : tm+(A))→
a =tm+(A) b→ tm+(eqA(a, b))

ref : {A} (a, b : tm+(A))→
tm⊖(F(eqA(a, b)))→ a =tm+(A) b

uni : {A, a, b} (p, q : tm⊖(F(eqA(a, b))))→
#(p = q)

nat : tp+

zero : tm+(nat)
suc : tm+(nat)→ tm+(nat)
rec : (n : tm+(nat))→

(X : tm+(nat)→ tp⊖)→ tm⊖(X(zero))→
((n : tm+(nat))→ tm⊖(X(n))→
tm⊖(X(suc(n))))→ tm⊖(X(n))

Figure 2.1: Equational presentation of calf as a signature Σcalf in the logical
framework. Here the type isOrderedMonoid encodes all the structure of an ordered
monoid and Σ denotes the framework-level dependent sum. We write (α, β) : A ∼= B
when α and β are the forward map and backward map of an isomorphism A ∼= B.
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Return
(Calf.Types.Bounded.bound/ret)

IsBounded (A; ret(a); 0)

Step
(Calf.Types.Bounded.bound/step)

IsBounded (A; e; c)
IsBounded

(
A; stepd(e); d+ c

)
Bind
(Calf.Types.Bounded.bound/bind)
IsBounded (A; e; c) ∀a : A. IsBounded (B; f(a); d(a))

IsBounded (B; bind(e; f); bind(e;λa. c+ d(a)))

Relax
(Calf.Types.Bounded.bound/relax)
IsBounded (A; e; c) c ≤ c′

IsBounded (A; e; c′)

Figure 2.2: Cost refinement lemmas in calf displayed in inference rule style.

(2.2.6∗2) In Section 2.2.10, we prove that “extensional cost bounds” #(c ≤ c′)
are equivalent to ordinary cost bounds c ≤ c′ for a large class of cost monoids in
the intended model of calf . The purpose of such a theorem is to interpret the
meaning of cost bounds derived in calf : when we have a proof of the refinement
IsBounded (A; e; c), we know that e = stepc′(ret(a)) for some c′ : C and a : tm+(A)
such that #(c′ ≤ c) holds. For this bound to be meaningful one needs to be able
to conclude from the extensional inequality #(c′ ≤ c) that the expected ordinary
inequality c′ ≤ c also holds.

(2.2.6∗3) Cost refinement lemmas. calf admits many expected principles for
reasoning about the isBounded refinement, and I present three representative cases
in Fig. 2.2.

2.2.7. Encoding general recursive algorithms in calf .

(2.2.7∗1) The last major component of calf is the representation of general recursive
programs, an a priori nontrivial obstacle. Here tension mounts in two opposite
directions: on the one hand, totality and termination is essential in the logical
interpretation of types as mathematical propositions in type theory; on the other
hand, algorithms are generally defined using unbounded recursion for efficiency
reasons. Therefore a type-theoretic framework for algorithm analysis needs to be
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able to encode general recursive algorithms in a way that preserves the cost intention
of the original program.

(2.2.7∗2) A well-known and versatile solution to the encoding of general recursive
functions in total type theory is the Bove–Capretta method [BC05]. Any general
recursive program gives rise to an accessibility predicate that tracks the pattern of
recursive calls; this accessibility predicate can be glued onto the original program
as a termination metric, and the final (total) function is defined by proving that
every input is accessible.

(2.2.7∗3) As I have alluded to in the discussion of catt (2.1.4∗4), working in a cost-
aware setting automatically equips the user with a way to encode general recursive
programs at no additional cost. The idea is to parameterize a given program in a
clock, induced by the cost recurrence, which can then serve as a termination metric
that frees the program to make whatever recursive calls are required. As observed
in Niu and Harper [NH20], the cost-aware setting evinces a synergetic relationship
between cost analysis itself and programming with general recursion that is further
amplified in calf : cost structure enables one to effectively encode general recursion,
and general recursion gives rise to programs with interesting cost structure.

(2.2.7∗4) Clocked programming. Our experience with calf has shaped the intuition
outlined in (2.2.7∗3) into a general recipe for defining and analyzing general
recursive algorithms. Suppose one is given an algorithm f : A ⇀ B along with its
cost model. Notice that the symbol ⇀ indicates that this is a partial function. Thus
one should think of f as an informal description of an algorithm external to calf .

1. Define a clocked version of the algorithm f� : N→ A→ B in which a clock
variable of type N represents the available “fuel” that is burned by making
recursive calls; when the clock is nonzero, f� follows the recursion pattern
exhibited by f by decrementing the clock, and when the clock is zero, f�
terminates by returning a default value or raising an exception. step’s should
be placed in f� in accordance with the given cost model.

2. Define the the associated cost recurrence for the clocked algorithm f/$� :
N→ A→ B.

3. Define the recursion depth fdepth : A→ N that bounds the number of recursive
calls made by f on a given input a : A.

4. Obtain the complete programs by instantiating the clocked programs with the
recursion depth: f(a) = f�(fdepth(a))(a) and f/$(a) = f/$�(fdepth(a))(a).
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5. Prove that the resulting algorithm is bounded by the cost recurrence f/$. This
process is mostly mechanical: one repeatedly applies the lemmas in (2.2.6∗3)
to break down isBounded goals.

6. Characterize the recurrence f/$ by (e.g.) computing a closed-form solution.
Usually this step represents the bulk of the work in pen-and-paper algorithm
analysis.

(2.2.7∗5) Relationship to the normal form theorem. One of the most well-known
results of computability theory Kleene [Kle43] is that any partial computable
function of type N→ N may be defined using one minimization operation; in other
words, one “while loop” is sufficient to compute any partial function. We observe
that the encoding of general recursive programs in calf shares a similar flavor in
the sense that the call-graph of an encoded algorithm may be seen as counting
down a single outer “for loop” whose bound is determined by the cost bound of the
algorithm.

2.2.8. Parallelism in calf .

(2.2.8∗1) Parallelism arises naturally in the setting of calf via an equational
presentation of the profiling semantics of Blelloch and Greiner [BG95]. Here we
present a version adapted from Harper [Har18] in which it is observed that the
source of parallelism can be isolated to the treatment of pairs of computations:
a parallel computation of A× B is furnished by a new computation form & that
conjoins two independent computations of A and B:

& : {A,B : tp+} tm⊖(F(A))→ tm⊖(F(B))→ tm⊖(F(A×B))

One may think of a term e & f as a computation in which e and f are evaluated
simultaneously.

(2.2.8∗2) Cost structure of parallelism. Blelloch and Greiner [BG95] characterize
the complexity of a program in terms of two measures: work, which represents its
sequential cost, and span, which represents its parallel cost. In calf this structure
is recorded by the parallel cost monoid C := (N2,⊕, (0, 0),≤N2) in which ⊕ and
≤N2 are component-wise extensions of addition and ≤. Parallel cost composition
is then implemented by the operation (w1, s1)⊗ (w2, s2) := (w1 + w2,max (s1, s2))
that takes the sum of the works and max of the spans. This provides the required
structure to assemble the cost of a completed parallel pair:

&join : {A,B, c1, c2, a, b} (stepc1(ret(a))) & (stepc2(ret(b))) = stepc1⊗c2(ret((a, b)))
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2.2.9. Case studies.

(2.2.9∗1) One lesson I learned from catt is that mechanization and cost analysis is
a one-two punch: many of the benefits of a formal framework cannot be grasped on
paper alone. In this sense this calf represents a major advancement over catt. The
examples we have studied in calf so far are not state-of-the-art but include heavy
hitters usually found in an introductory algorithms textbook: Euclid’s algorithm,
sequential and parallel insertion and merge sort, and amortized analysis of batched
queues. For all of the algorithms except parallel merge sort we have verified the
best known asymptotic bound, a feat that relies crucially on the ability to express
extensional/behavioral specifications and use ordinary mathematical reasoning in
calf . This small collection of case studies suggests an auspicious beginning to a
growing library of formally verified algorithms in calf , which would be the first
steps towards the development of large-scale cost-aware programs. In the following
I will try to convey the experience of using calf for program verification.

(2.2.9∗2) Agda encoding of calf. We define calf in Agda by postulating the
constants in the signature Σcalf (see Fig. 2.1) and animating the associated equations
with the recently added rewriting facilities [CTW21]. For instance, the basic
judgmental structure of calf may be specified by the following Agda postulates:

postulate
mode : Set
pos : mode
neg : mode

postulate
tp : mode→ Set

tm+ : tp pos→ Set

postulate
F : tp pos→ tp neg
U : tp neg→ tp pos

In this encoding of calf we define computations as tm⊖(X) = tm+(U(X)),
leading to a more streamlined version of CBPV in which thunk and force are
identities. Observe that the Agda implementation of calf constitutes an algebra
(2.2.10∗3) AAgda in which Set plays the role of the universe of judgments Jdg.

(2.2.9∗3) The equational theory of calf is encoded via rewriting; for instance we
may implement the inversion principle for bind as follows:

postulate
bind/ret : {A,X} {v : tm+(A)} {f : (x : tm+(A))→ tm⊖(X)}

bind(ret(v); f) ≡ f(v)
{-# REWRITE bind/ret #-}
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Here the REWRITE pragma tells Agda to treat bind/ret as a rewrite rule that
replaces the expression to the left of ≡ with the expression to the right.

(2.2.9∗4) Cost bounds. Following the description of (2.2.6∗1), the data associated
with cost bounds is naturally captured by a record type in the Agda encoding of
calf :

record IsBounded(A : tp+)(e : tm⊖(F(A)))(c : C) : Set where
result : tm+(A)

c′ : C
hyp/bounded : #(c′ ≤ c)

hyp/eq : e ≡ stepc′(ret(result))

(2.2.9∗5) Cost models. As indicated in the recipe from (2.2.7∗4), the analysis of
every algorithm begins with the definition of the cost model. In Euclid’s algorithm
the cost model is the number modulus operations. In calf is this specified by an
instrumented version of the modulus operation that incurs unit cost:

modinst : tm+(nat)→ tm+(nat)→ tm⊖(F(nat))
modinst(x, y) = step1(ret(mod (x, y)))

On the other hand, in the analysis of sorting algorithms, it is customary to consider
the comparison cost model in which the only operation that incurs cost is the com-
parison operation. In calf we may parameterize the analyses of sorting algorithms
by the following comparable type:

record Comparable : Set1 where
A : tp+

≤ : tm+(A)→ tm+(A)→ Set
≤dec : tm+(A)→ tm+(A)→ tm⊖(F(bool))

≤dec / ≤ : {x, y, b}→ #((x ≤dec y) ≡ ret(b)→ Reflects (x ≤ y) b)
≤ /ord : isTotalOder ≤

≤dec /cost : (x, y : tm+(A))→ IsBounded bool (x ≤dec y) 1

In other words a comparable type is a type A equipped with a total ordering relation
≤. To program with comparable types we also need the ordering to be decidable,
which is encoded above as ≤dec. Because the comparison cost model dictates that
the comparison operation is unit cost, we require a field ≤dec /cost to record this fact
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using the IsBounded type defined in (2.2.9∗4). Lastly, the field ≤dec / ≤ indicates
that ≤dec is a decision procedure for ≤, i.e. the x ≤dec y computes the value tt : bool
if and only if x ≤ y holds. Here we observe another use of the extensional modality
#: because the decision procedure ≤dec is a cost-aware computation, we descend to
the extensional phase to state its behavioral specification.

(2.2.9∗6) Cost-aware programming. With the cost model in place, cost-aware
programming in calf is very similar to ordinary programming. For instance, we
may implement insertion sort by following the standard textbook definition adapted
to a CBPV setting:

insert : tm+(A)→ tm+(list(A))→ tm⊖(F(list(A)))
insert x [ ] = ret([x])

insert x (y :: ys) =
bind (x ≤dec y) (λb.
case b of

tt→ bind (insert x ys) (λr. ret(y :: r))
ff → ret(x :: (y :: ys)))

insertionSort : tm+(list(A))→ tm⊖(F(list(A)))
insertionSort [ ] = [ ]

insertionSort (x :: xs) = bind (insertionSort xs)(λxs′. insert x xs′)

In the above we are assuming A is a comparable type in the sense of (2.2.9∗5).

(2.2.9∗7) Clocked programming. In general, we will not be able to define verbatim
the standard versions of algorithms in calf . As I discussed in Section 2.2.7, general
recursive algorithms is encoded in calf by means of clocked programming. In the
case of Euclid’s algorithm, we define the following clocked program:

gcd� : tm+(nat)→ tm+(nat2)→ tm⊖(F(nat))
gcd� zero x y = ret(x)

gcd� (suc(k)) x zero = ret(x)
gcd� (suc(k)) x (suc(y)) = bind (modinst(x, suc(y))) (λr. gcd�(k)(suc(y), r))

Recall that modinst is the instrumented modulus that encodes the cost model for
Euclid’s algorithm. Here the first argument to gcd� is a clock parameter that ticks
down at each recursive call of Euclid’s algorithm; when the clock parameter is
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zero gcd� simply returns the first real argument. In other words gcd� k x y is the
k-approximation of gcd(x, y) in which Euclid’s algorithm is only allowed to make k

recursive calls.

(2.2.9∗8) Instantiating the clock. Does the clocked program gcd� satisfies the
behavioral specification of Euclid’s algorithm, i.e. does gcd� compute the gcd? We
already observed that gcd� k x y only computes k-approximations of gcd(x, y).
However, if the approximation level k (i.e. number of recursive calls) is sufficient,
then it should be the case that gcd� k x y actually computes gcd(x, y). First, we
define a function to compute the necessary approximation level (i.e. depth of the
recursion tree) for any input to Euclid’s algorithm:

gcddepth : tm+(nat2)→ tm+(nat)

gcddepth x y =
zero if y = zero
suc(gcddepth y (mod (x, y))) o.w.

Note that gcddepth is a specification of a function by cases: because we do not need
to track the cost of computing the recursion depth, gcddepth may be defined however
convenient.4

(2.2.9∗9) Extensional modality. We now instantiate the clocked algorithm gcd�
by the recursion depth gcddepth: define gcd x y := gcd� (gcddepth x y) x y. We
may prove that gcd computes the gcd, a behavioral specification that is naturally
expressed as the following equations in the extensional phase:

#(gcd x zero = ret(x)) (1)
#(gcd x (suc(y)) = gcd (suc(y)) (mod x suc(y))) (2)

As we mentioned previously (2.2.6∗1), the extensional modality also appears when
reasoning about cost bounds themselves (2.2.9∗13).

(2.2.9∗10) Cost recurrences. The method of recurrence relations in traditional
presentations of algorithm analysis is divided into the two expected stages in calf :
we extract a cost recurrence $ from the algorithm and compute a closed-form formula
φ for the cost recurrence $. Each of these steps has an associated proof obligation:
we have to show that $ is indeed a cost bound for the algorithm and that φ is an
upper bound for $. Recall from (2.2.7∗4) that a cost recurrence is a function that
assigns a cost to each input of the algorithm paired with a given clock. In the case

4In Agda we define gcddepth using well-founded induction on the last argument.
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of Euclid’s algorithm we have the following cost recurrence associated to gcd�:

gcd/$� : tm+(nat)→ tm+(nat2)→ tm+(nat)
gcd/$� zero x y = zero

gcd/$� (suc(k)) x y =
zero if y = zero
suc(gcd/$� k y (mod (x, y))) o.w.

Similar to the case for the recursion depth (2.2.9∗8), we do not track the cost
computing the cost recurrence.

(2.2.9∗11) We may prove that gcd/$� is a cost bound for gcd�, which is expressed
by the following calf theorem:

gcd�/bound : (k, x, y : tm+(nat))→ IsBounded nat (gcd� k x y) (gcd/$� k x y)

The proof of gcd�/bound is entirely mechanical: the user simply breaks down the
overall IsBounded proof goal and fulfills the generated sub-goals using the syntax-
directed cost refinement lemmas (some of which are depicted in Fig. 2.2). In fact this
step is taken to be so obvious that often no proof is given in textbook presentations
of algorithm analysis.

(2.2.9∗12) The last and usually most difficult step in algorithm analysis is to
compute a closed-form solution or otherwise informative bound to the cost recurrence.
This step is also the place where calf shines as a mathematical domain for reasoning
about cost bounds. For instance, we may prove a very precise bound on the cost
recurrence gcd/$ x y := gcd/$� (gcddepth x y) x y that is known to be asymptotically
tight.5 Let Fib : N → N be the fibonacci sequence, and let Fib−1 : N → N be the
function characterized by the equation Fib−1(x) = max {i | Fib(i) ≤ x}. We have
the following calf theorem:

gcd/$/bound : (x, y : tm+(nat))→ (x > y)→ gcd/$ x y ≤ 1 + Fib−1(x)

In conjunction with (2.2.9∗11), we obtain the following cost bound for gcd:

gcd/bound : (x, y : tm+(nat))→ (x > y)→ IsBounded nat (gcd x y) (1 + Fib−1(x))

(2.2.9∗13) Extensional cost bounds. As I mentioned in (2.2.6∗1), it is sometimes
necessary to access the extensional phase of calf when proving bounds on cost

5We have not verified that it is indeed the tightest bound possible. But calf allows the user to
prove these results if desired.
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recurrences. For instance, when computing the closed-form solution to the cost
recurrence of insertionSort from (2.2.9∗6), we would like to have access the theorem
insertionSort/correct : IsSort insertionSort stating that insertionSort is a sorting
algorithm, where IsSort is the following family:

IsSort : (tm+(list(A))→ tm⊖(F(list(A))))→ Set
IsSort f = (l : tm+(list(A)))→ #(Σl′ : tm+(list(A)). f l ≡ l′ × SortedOf l l′)

Observe that the predicate IsSort is naturally lives in the extensional phase because
we do not want to keep track of the cost incurred by the candidate sorting pro-
gram. Consequently we relate insertionSort/$ (the cost recurrence associated to
insertionSort) to its closed-form solution in the extensional phase:

insertionSort/$/bound : (l : tm+(list(A)))→ #(insertionSort/$ l ≤ |l|2)

2.2.10. Metatheory.

(2.2.10∗1) In Niu et al. [Niu+22] we substantiated the axioms of calf by means of
a model construction and proved the following theorems:

1. Nondegeneracy. The cost effect step is not degenerate, i.e ⊬ step1(e) = e

for any e : F(A).

2. Validity of cost bounds. We have that ⊨ #(m ≤ n) if and only if ⊨ m ≤ n

for all m,n : N.

The first theorem states that when the cost monoid is instantiated as C := N the
cost effect step is non-degenerate; the second theorem is a statement about the
models of calf and states that in the intended model of calf extensional cost bounds
in the sense of (2.2.6∗1) coincide with ordinary cost bounds.

(2.2.10∗2) Models of calf. Unlike catt in which the analytic construction of
the theory automatically implies logical consistency and the validity of cost-aware
judgments, the validity of calf as a theory is substantiated by means of model
construction. Here we benefit from the definition of calf as a signature in the
logical framework: calf is the free lccc Ccalf over the signature Σcalf presented in
Fig. 2.1. Consequently one may prove metatheorems about calf using the universal
property of freely generated categories. In the context of functorial semantics
[Law63], the universal property states that one may define a model Ccalf → E by
simply specifying the image of the constants of Σcalf in E .6

6An analogous situation arises when considering homomorphisms out of a free group: any
function on the generators determines a homomorphism.
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(2.2.10∗3) Algebra for a signature in the logical framework. The data of this
specification is encapsulated by the notion of an algebra for a signature: let E be a
category that has a universe U closed under dependent products, dependent sums,
and extensional equality. Given a signature Σ in the logical framework, we can
define a type AlgU(Σ) of U -small algebras for Σ in E by interpreting Jdg as U and
taking the dependent sum over all the constants declared in Σ.

(2.2.10∗4) Thus, given a category E with the structures described in (2.2.10∗3),
we can define a model of calf by exhibiting an algebra A : AlgU(Σcalf) in some
universe U of E . In fact we can define the intended model of calf in any given
topos X with a distinguished subterminal object representing the phase separation
of intension and extension.

(2.2.10∗5) Given a large enough universe level λ, one may define a Uλ-small model
of calf via a version of the standard Eilenberg–Moore interpretation of CBPV in
which computation types are interpreted as algebras for a given monad. In the
case of calf we dub this interpretation the counting model A, so named because
the interpretation of the computation type F(A) is the free algebra of a particular
writer monad whose carrier classifies elements of A paired with a step count.

(2.2.10∗6) We may instantiate generic construction of the counting model A in
the presheaf topos over the interval category { 0→ 1 }, which may be seen to be
equivalent to the arrow category Set→. Observe that objects in this category are
families of sets A : A1 → A0, which corresponds to the fact that a type A is a
family indexed in a collection of behaviors with the fibers representing the cost
structure over a given behavior. In Set→ the extensional phase ¶E is furnished by
the subterminal family 0→ 1, and the extensional modality takes a family A1 → A0

to the identity A0 → A0, trivializing the fiber (i.e. cost structure) over each point
in A0. We write ASet→ for the instance of the counting model constructed in the
arrow category Set→.

(2.2.10∗7) The counting model of calf validates the non-degeneracy theorem.
More precisely, we may show that (stepc(e) = e)→ ¶E for any nonzero c : C and
e : F(A). In other words we know that if step is degenerate, then the extensional
phase ¶E is derivable. Observing that we placed no restrictions on the proposition
¶E in the construction of the counting model, we immediately obtain the desired
theorem by instantiating ¶E with the false proposition.

(2.2.10∗8) The counting model also validates the equivalence between extensional
equalities and ordinary equalities whenever the cost monoid is extensional in the
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sense that C ∼= #C and the relation ≤ may be characterized using Σ and equality
types.

(2.2.10∗9) For instance given the cost monoid C := N, We have that ASet→ ⊨
#(m ≤ n) if and only if ASet→ ⊨ m ≤ n for all m,n : N.

(2.2.10∗10) It may be natural to ask if (2.2.10∗9) holds for the syntactic model of
calf , i.e. is it the case that ⊢ #(m ≤ n) if and only if ⊢ m ≤ n. While the backwards
implication is immediate from the definition of the extensional modality, the forward
implication requires the fact that canonicity holds for calf ; in Section 2.2.10 we
conjecture that the techniques of synthetic Tait computability developed by Sterling
and Harper [SH21] can be used in the setting of calf to give a succinct proof of
canonicity.



chapter 3

PROPOSED WORK

3.1. METATHEORY

(3.1∗1) A basic property usually considered in the context of the metatheory of
type theories is canonicity, which roughly states that there are enough equations
for (closed) computation at base type. In calf one may formulate this property as
follows:

For any closed free computation e : F(A), there exists a unique cost c
and value a : A such that e = stepc(ret(a)).

Besides being of independent interest for a type theory, canonicity is also necessary
for proving the metatheorem characterizing extensional cost bounds (2.2.10∗10).

(3.1∗2) As usual canonicity may be proved by using a logical relations argument.
Following the spirit of the objective metatheory of type theories propounded in
Sterling [Ste21], I propose to proof canonicity for calf using the tools of synthetic
Tait computability (STC) developed in op. cit. At a high level, STC provides a
type-theoretic interface to construct and manipulate the syntactic and semantic
structures arising in a traditional logical relations proof. It is argued by op. cit.
(and to me, convincingly) that by embracing this synthetic perspective one may
develop more succinct and modular proofs of metatheorems of type theory when
compared to classic techniques. Indeed, STC has been deployed to prove (among
other things [SH21; Gra21]) the last open syntactic metatheorem of cubical type
theory [SA21].

(3.1∗3) In STC, every type may be seen as a computability structures that
decomposes into a syntactic part and a semantic part, thus providing a language
for synthetic manipulations of the data of logical relations. To be concrete, suppose

42
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that we would like to establish metatheorems about a theory T using STC. In this
case the language of STC is an extensional type theory extended with the following:

1. A distinguished proof-irrelevant proposition syn : Ω that mediates the phase
distinction between the syntactic and semantic. We write #syn, syn for the
associated open and closed modality.

2. A hierarchy of strict cumulative universes Uα satisfying the realignment axiom
[Ste21].

3. An algebra Asyn the given theory T in which the judgments are interpreted
in a syntactic open-modal universe, i.e. an element of Alg#synUα

(T) for some
universe Uα.

Note that the syntactic/semantic phase distinction of STC is formally analogous to
the extension/intension phase distinction of calf . The syntactic open syn generates
for any universe an open subuniverse of pure syntactic types, and the algebra Asyn

may be seen as an embedding of the target theory T. To carry out a computability
proof such as canonicity, we define an algebra A of T such that it is equal to Asyn

when we have a proof of syn. This aligment/restriction property corresponds to
the fact that the computability data of e.g. booleans should be about the actual
booleans of T.

(3.1∗4) The benefit of STC is that one can define the computability algebra using
simple type-theoretic constructions by exploiting the properties of the syntactic/open
and semantic/closed modalities. Given such an algebra, the actual metatheorem may
be extracted by instantiating the STC theory at a concrete topos. For canonicity, the
STC topos is given by the Artin gluing of the global sections functor Pr(CT)→ Set,
where CT is the category of contexts of the theory T.

(3.1∗5) I plan to use STC to prove canonicity of calf by adapting the construction
of the canonicity model for MLTT given in Sterling [Ste21]. An anticipated difficulty
is how to handle the value-computation dichotomy present in calf . While the
computability data attached to a value type A is any type that restricts to syntactic
values of A, the data attached to a computation type X appears to be an algebra
for the cost monad that restricts to the syntactic algebra associated to X (that is,
the algebra on Algsyn.tm⊖(X) whose structure is given by the syntax of calf). In
order to make this interpretation work, we need to verify that one may also realign
along partial isomorphisms of algebras.
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(3.1∗6) I have not addressed the analogous property for open computations of calf ,
i.e. normalization, which would be necessary to show that it is possible to implement
proof assistants based on calf . The reason is two-fold. First, normalization is a
much more difficult metatheorem (although certainly within reach in view of Sterling
[Ste21]). Second, it is unclear what the normal forms of partial computations should
be when we extend calf to study denotational semantics in Section 3.2. In any
case, canonicity represents a first step in the metatheory of calf and should provide
some insight on how to go about studying normalization.

(3.1∗7) Note that the lack of a normalization result does not prevent us from using
calf in practice. As we outline in Section 2.2.9, it is straightforward to encode a
version of calf in modern proof assistants, a strategy that also allows one to use
the facilities and mathematical results of the host language.

3.2. SYNTHETIC COST-AWARE DENOTATIONAL SEMANTICS

The latter half of this proposal is composed of a series of experiments that positions
(extensions of) calf as a logical framework/metalanguage for doing synthetic deno-
tational semantics. In the following, we outline the motivations of this work and
present the blueprint for three successively more involved case studies that furnish
evidence in support of the aforementioned hypothesis.

3.2.1. Cost-aware denotational semantics.

(3.2.1∗1) In Section 2.2 we showed how to use calf for cost-aware programming
and verification, which substantiates the view of calf as a cost-aware programming
and specification language. On the other hand, because calf is also a dependent
type theory, one is prompted to look for mathematics that may be naturally
expressed in calf . Given that we have developed calf to express cost-aware program
specifications, one natural candidate is the theory of denotational semantics of
programming languages. Therefore, in this sense one may also view calf as a
metalanguage for studying the global, cost-sensitive properties of programming
languages.

(3.2.1∗2) In addition to be of independent interest, cost-aware denotational seman-
tics also provides a criterion for the adequacy of cost models in view of the discussion
in Section 1.1.5. We briefly sketch the idea. Suppose that we have specified in calf
a programming language P along with its operational semantics ⇓. We write e for
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terms of P. Moreover, assume that we also have in hand a denotational semantics
J−K for P. Consider the following property:

Given an equation JeK = ret(JaK) at base type, we have that e ⇓ a
operationally as well.

A denotational semantics J−K with the property above is said to be computationally
adequate with respect to ⇓.

In order to express effective adequacy, we will generalize this notion by connect-
ing operational and denotational cost semantics, which we refer to as cost-aware
computational adequacy. We defer the specifics of the definition to Section 3.2.3;
however the application of this property is straightforward: one may rephrase
adequacy of a cost-instrumentated program e as the existence of a program e of
P such that JeK = e, since by cost-aware adequacy any cost bound derived on e is
guaranteed to coincide with the operational cost bound on e.

3.2.2. Synthetic mathematics.

(3.2.2∗1) We have already discussed the distinction between analytic and synthetic
mathematics in Section 1.3 in the context of theories for cost analysis. In the
present discussion we propose to extend the synthetic perspective to the theory of
denotational semantics.

(3.2.2∗2) While the strength of synthetic theory for cost analysis of Sections 2.1
and 2.2 surfaced somewhat indirectly in terms of practicality and usability of the
resulting theory, the benefits of synthetic denotational semantics may be grasped
more directly. First, by isolating properties essential to the study of denotational
semantics, one may obtain more general theorems that apply to different concrete
models. Secondly, a synthetic theory is often more user-friendly. For instance, for
the purposes of program verification, often times it is not necessary for the user of a
framework to have a deep understanding of domain theory — what is important is
that domain theory provides an interface for constructions and reasoning principles
relevant to programming.

(3.2.2∗3) The point of synthetic denotational semantics then is to provide a
collection of principles for reasoning about denotational semantics similar to that
of synthetic domain theory. In my view, while synthetic domain theory provides
an axiomatization of structures necessary in a topos to carry out classic domain
theoretic constructions, synthetic denotational semantics can be thought of as an
interface built on top of constructions of SDT that can be used to both develop new
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proofs and study classical proofs. This hierarchical relationship is reflected in the
proposed extension of calf in Section 3.6 — one constructs and studies denotational
models using the language of synthetic denotational semantics, the axioms of which
are then validated by constructions in topoi equipped with an SDT theory.

(3.2.2∗4) Because calf is a synthetic theory for cost-aware constructions, when one
defines a (inherently) cost-aware denotational semantics in calf one also automati-
cally defines an extensional denotational semantics. Consequently, one may easily
restrict cost-aware theorems about denotational semantics to ordinary theorems
about the underlying extensional semantics. In Section 3.2.3 we show how this
fact may be used to immediately extract the classic Plotkin-type computational
adequacy theorem from the generalized cost-aware version.

(3.2.2∗5) This synthetic treatment of intension and extension represents an im-
provement compared to prior work on denotational semantics in guarded type
theory [PMB15; MP16]. Although the denotational semantics of op. cit. is also
intensional/cost-aware due to the use of guarded recursion, the corresponding theory
of extensional denotational semantics does not follow immediately as a corollary. In
fact the extensional denotational semantics requires a separate construction involv-
ing the guarded version of the delay monad and the associated weak bisimilarity
relation.

The work required in op. cit. did not disappear; the advantage of a synthetic
language of cost-aware constructions is the isolation of the interaction of intension
and extension and the associated principles, which may be verified once and for all
in the model and deployed more generally than the ad-hoc constructions of op. cit.

3.2.3. Cost-aware computational adequacy.

(3.2.3∗1) Before going into detail about the specific case studies, we first outline
the ideas behind cost-aware computational adequacy. Assume we are given a cost
semantics for a programming language P. Recall from (1.1.1∗3) that the cost
semantics a ternary relation on closed programs, a cost monoid C, and the set of
terminal programs, and we write e ⇓c v when e evaluates to a value v with cost
c. Let J−K be a denotational semantics of P. Consider the following attempt to
generalize extensional computational adequacy:

Given an equation JeK = stepc(ret(JaK)) at base type, we have that e ⇓c a.

This statement does not generalize extensional adequacy because it is false in
the extensional phase! Suppose u : ¶E is a proof of the extensional phase. If
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JeK = stepc(ret(JaK)), then JeK = stepc′(ret(JaK)) for any c′ : C, and so by the
conjectured adequacy theorem we would have e ⇓c a and e ⇓c′ a. But this is a
contradiction because the cost semantics is deterministic.

(3.2.3∗2) Phase-separated cost semantics. The problem with the attempted gen-
eralization may be resolved by using the intensional modality (2.2.4∗3) to seal
away cost information in the operational cost semantics. We refer to the relation as
the phase-separated evaluation relation. Recall that the operational cost semantics
may be equivalently formulated using the small-step operational semantics (7→, val).
We begin by defining a version of the reflexive-transitive closure of 7→ with a cost
component that is sealed by the intensional modality:

Refl

e 7→η 0
¶E

e

Trans
e 7→ e1 e1 7→c

¶E
e2

e 7→c( +)η 1
¶E

e2

In the above  + is the functorial action of  on +, and η is the unit of the monad.
Cruically, this relation becomes equivalent to the ordinary reflexive transitive closure
under the extensional phase:

Prop 3.2.3∗2.1. Given u : ¶E, we have that e 7→η c
¶E

v if and only if e 7→∗ v for all
c : N.

We define the phase-separated evaluation as e ⇓c¶E
v := e 7→c

¶E
v × v val, which

also restricts to ordinary evaluation extensionally.

(3.2.3∗3) We now define cost-aware computational adequacy:

Given an equation JeK = stepc(ret(JaK)) at base type, we have that
e ⇓η c¶E

a.

Extensional adequacy follows immediately:

Prop 3.2.3∗3.1. Suppose that u : ¶E. If JeK = ret(JaK), then e ⇓ b.

Proof. By cost-aware adequacy, we have e ⇓η 0¶E
a. But because phase-separated

evaluation is equivalent to ordinary evaluation extensionally, we have that e ⇓ a as
well.

3.2.4. Synthetic denotational semantics vs. SDT.

(3.2.4∗1) We already observed in (3.2.2∗3) that synthetic denotational semantics
is different from SDT. But given that a number of works already use SDT topoi to
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study programming languages with recursion [Sim99], recursive types [Sim04], and
polymorphism [SR04], what is the purpose of the proposed distinction?

(3.2.4∗2) First, it should be noted that for op. cit., a programming language
with its static and dynamic semantics is specified externally. Then, an internal
adequacy theorem is then established with respect to an internal version of the
programming language defined by Godël numberings. This is used to prove the
external adequacy result when the topos is computationally 1-consistent, i.e. 1-
consistent for primitive recursive predicates. In calf there is no distinction between
internal and external syntax because we view programming languages from a
completely internal perspective. Consequently, there is no need to consider internal
vs. external adequacy.

(3.2.4∗3) A more significant contribution of the proposed work stems from the
fact that topoi do not directly present a convenient language for doing cost-aware
programming/mathematics in the sense described in Section 2.2. Moreover, while
both calf and topoi provide logics for reasoning about programs, calf can also
be thought of as a programming language, whereas the same cannot be said for
arbitrary topoi. Lastly, I believe that using calf to study denotational semantics
also provides some pedagogical value towards the general computer science audience,
who is probably more familiar with the type-theoretic language of calf in comparison
to traditional presentations of SDT.

3.3. DENOTATIONAL SEMANTICS IN CALF

(3.3∗1) In this section we outline the case studies used to investigate calf as a
framework for studying denotational semantics. Each case study will be centered
around a programming language. The features of this language then guide extensions
of the base calf theory with axioms necessary to define and study the associated
denotational model.

(3.3∗2) The first two case studies are worked out in detail and represent encouraging
evidence in support of calf as a framework for cost-aware denotational semantics;
we have outlined initial plans for the last case study. In Section 3.4 we present calf⋆,
an extension of calf with universes and inductive types, and study the simply-typed
lambda calculus (STLC); in Section 3.5 we extend calf⋆ with unbounded iteration
and use the resulting theory to study Modernized Algol (MA), a language with
while loops and first-order store. Lastly in Section 3.6 we discuss the plan to extend
the previous theories to account for general recursion and sketch a denotational
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semantics for PCF in the extended theory.

3.4. CASE STUDY: STLC

(3.4∗1) In this section we present calf⋆, an extension of calf with inductive types
and universes, and demonstrate the general machinery used to execute synthetic
cost-aware denotational semantics in calf⋆ with a very simple programming language,
the simply-typed lambda calculus (STLC). We also construct models of calf⋆ based
on mild modifications of the standard model of calf presented in Niu et al. [Niu+22].

3.4.1. Axiomatizing calf⋆.

(3.4.1∗1) Inductive types. In order to define object languages such as the STLC
in calf , we have to extend calf with a mechanism for defining general inductive
types. By well-known results of type theory, inductive types may be encoded in an
extensional type theory such as calf via W -types. For presentation purposes we
will continue to write inductive definitions using traditional notations, but it should
be noted that unless stated otherwise they are all definitions internal to calf and
may be unraveled to a W -type.

(3.4.1∗2) Universes. Because the type-level component of a denotational semantics
is a recursive function assigning object language types to calf types, we also need to
axiomatize universes in calf . Following prior work on dependent call-by-push-value,
we do so by introducing a pair of value and computation universes:

Univ+ : tp+

El+ : tm+(Univ+)→ tp+

Univ⊖ : tp⊖

El⊖ : tm+(Univ⊖)→ tp⊖

We then close the value and computation universe under all connectives of calf . As
an example, closure under Π may be specified as follows:

Π̂ : (A : Univ+)→ (El+(A)→ Univ⊖)→ Univ⊖

Π̂/decode : {A,X} El⊖(Π̂(A,X)) = Π(El+(A), λa. El⊖(X(a)))

(3.4.1∗3) We now axiomatize properties necessary for proving that the cost-aware
generalization of the standard denotational semantics of STLC is computationally
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Γ, x : A ⊢ x : A
Γ, x : A1 ⊢ e : A2

Γ ⊢ lam(x.e) : A1 ⇒ A2

Γ ⊢ e : A1 ⇒ A2 Γ ⊢ e1 : A1

Γ ⊢ ap(e, e1) : A2

Γ ⊢ tt,ff : bool
Γ ⊢ e : bool Γ ⊢ e1 : A Γ ⊢ e2 : A

Γ ⊢ if(e, e1, e2) : A

Figure 3.1: A version of the STLC in calf⋆.

adequate in the sense of (3.2.3∗3). For STLC, we only require one property —
the uniqueness of cost bounds:

step/inj : {A, (a, a′ : A)(c, c′ : C)} stepc(ret(a)) = stepc′(ret(a′))→ a = a′ × (c = c′)

Note that because the premise of step/inj could have been derived using a proof of
the extensional phase, we must seal the equation c = c′ by the intensional modality.

(3.4.1∗4) The axioms introduced in (3.4.1∗1) through (3.4.1∗3) constitute an
extension of calf we refer to as calf⋆. In Section 3.4.2 we show how to define a
computational adequate denotational model of STLC in calf⋆.

3.4.2. Cost-aware denotational semantics of STLC.

(3.4.2∗1) We work with a version of the STLC with a boolean type bool and a
call-by-value operational semantics. In view of (3.4.1∗1), the statics and dynamics
of this language may be specified in calf using inductive types in the standard way.
We write ⇓ for the ordinary evaluation relation and ⇓¶E for the phase-separated
evaluation (see (3.2.3∗2)) of STLC. For reference we present the static semantics
of STLC in Fig. 3.1.

(3.4.2∗2) The denotational semantics of STLC in calf⋆ is based on the standard
decomposition of CBV in CBPV. The types are interpreted as follows:

J−KTy : Ty→ tp+

JboolKTy = bool
JA1 ⇒ A2KTy = U(JA1KTy → F(JA2KTy))

In the above we write Ty for the type of STLC types. Terms of STLC are
interpreted in the standard way. Note that to align the denotational cost with
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operational cost it is necessary to incur cost in locations where reductions occur in
the operational semantics:

J−KTm : {Γ, A} Tm(Γ, A)→ JΓKCon → F(JAKTy)
JxKTm = ret ◦ π1

JttKTm(−) = ret(tt)
JffKTm(−) = ret(ff)

Jif(e, e1, e2)KTm(γ) = bind(JeKTm(γ);λb. step1(if(b, Je1KTm(γ), Je2KTm(γ))))
Jlam(x.e)KTm(γ)(a) = JeKTm(a, γ)

Jap(e, e1)KTm(γ) = bind(JeKTm(γ);λf. bind(Je1KTm(γ);λa. step1(f(a))))

In the above we write Tm(Γ, A) for the type of STLC terms of type A in the
context Γ.

(3.4.2∗3) We will prove cost-aware computational adequacy by means of a logical
relations argument. Guided by the natural value-computation dichotomy present in
the metalanguage, we define a binary logical relation ≈A:Ty ⊆ Pg(A)× JAKTy that
relates STLC programs to values of semantic domain and use this to define another
relation ≈⇓

A:Ty ⊆ Pg(A)× F(JAKTy) that relates STLC programs to computations
of the semantic domain.1 Here we write Pg(A) for closed STLC terms of type A.
Because the value logical relation employs the computation relation at higher types
we define them mutual recursively on the structure of STLC types:

b ≈bool b

lam(x.e2) ≈A1⇒A2 e iff ∀e1 : Pg(A1), e1 : JA1KTy. e1 ≈A1 e1 =⇒ [e1/x]e2 ≈⇓
A2

e(e1)

e R⇓ e iff Σv : Pg(A). Σv : JAKTy. (e ⇓η c¶E
v)× e = stepc(ret(v))× v R v

In the above we write b for the boolean numeral of b : bool.

(3.4.2∗4) We may prove the fundamental theorem:

Theorem 3.4.2∗4.1 (FTLR). Given a STLC term e : Tm(Γ, A), if γ ≈Γ γ, then
e[γ] ≈⇓

A JeKTm(γ).

In the above ≈Γ is the evident generalization of the value logical relation to to
a context of STLC types. Cost-aware computational adequacy is an immediate
corollary of Theorem 3.4.2∗4.1:

1Technically these relations are defined as functions into tp+, but because the fibers of each
family are subterminal we use the traditional proof-irrelevant notation.
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Corollary 3.4.2∗4.1 (Computational adequacy). Given a closed term e : Pg(bool),
if e = stepc(ret(b)) for some c : N and b : bool, then e ⇓η c b.

Moreover, we also easily obtain the ordinary extensional adequacy theorem:

Corollary 3.4.2∗4.2 (Extensional adequacy). Suppose that u : ¶E. Given a closed
term e : Pg(bool), if e = ret(b) for some b : bool, then e ⇓ b.

3.4.3. Models of calf⋆.

(3.4.3∗1) Recall from Section 2.2.10 that one may define the counting model of calf
in any presheaf topos with a distinguished proposition representing the extensional
phase. We will define models of calf⋆ based on the counting model.

(3.4.3∗2) Modeling inductive types. Because W types exist in any topos equipped
with a natural numbers object, we may interpret W types of calf⋆ in any presheaf
topos.

(3.4.3∗3) Modeling universes. In the counting model, value types of calf are
interpreted as plain types in the model and computations types are interpreted
as algebras for the cost monad  C×−. Therefore we simply interpret the value
universe Univ+ as a sufficiently large universe Uα of X. Because the computation
universe Univ⊖ is itself a computation type we have to assign it an algebra structure.
As the cost structure of types is irrelevant, we may use the trivial algebra structure
associated to the projection map  C× A→ A. The carrier of this algebra is the
type of Uα-small algebras, i.e. algebras whose carriers are valued in Uα.

3.5. CASE STUDY: MA

(3.5∗1) The second language we study is Modernized Algol (MA), a variant of Algol
presented in Harper [Har12]. MA represents a moderate increase in complexity
from the STLC. It features while loops and first-order store and is a step closer
to a language in which one may implement real-world algorithms. We follow the
same outline as for the STLC. First, we introduce calfω, an extension of calf with
unbounded iteration. Next, we define a denotational semantics for MA in calfω and
show that it satisfies a cost-aware adequacy theorem similar to the one presented in
(3.4.2∗4). Lastly, we sketch a model of calfω.
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3.5.1. Axiomatizing calfω.

(3.5.1∗1) For our purposes, unbounded iteration refers to the unbounded iteration
of a function A→ F(B + A) in which the type A represents the state of the iterative
system and B is the type of the terminal state. Given such a iterative transition
system f : A → F(B + A), we write iter(f) : A → F(B) for the induced iterative
computation. Iterative computations should satisfy the evident unfolding law:
iter(f, a) = bind(fa; [ret; iter(f)]).

(3.5.1∗2) Because unbounded iteration necessarily engenders non-terminating com-
putations, we have to arrange for these computations in calfω. Although it is
possible to include divergent computations in the free computations, it is simpler to
introduce a type of lifted computations that embeds the free computations:

L : tp+ → tp⊖

lift : {A} F(A)→ L(A)
lift/inj : {A} lift(e) = lift(e′)→ e = e′

We also assume that L is a monad:

retL : {A} A→ L(A)
retL := lift ◦ ret

bindL : {A,B} L(A)→ (A→ L(B))→ L(B)

Moreover, we postulate that the both the monad structure and the cost effect
commutes with lift:

lift/bind : {A,B, e, f} lift(bind(e; f)) = bindL(lift(e); lift ◦ f)
lift/step : {A, e, c} lift(stepc(e)) = stepc(lift(e))

(3.5.1∗3) Unbounded iteration. As mentioned in (3.5.1∗1), we axiomatize that
iteration is available for lifted computations:

iter : {A,B} (A→ L(B + A))→ A→ L(B)
iter/unfold : {A,B, f, a, a′} iter(f)(a) = bindL(f(a); [retL(b); iter(f)])

Moreover, to prove computational adequacy it is necessary to require that whenever
an iterative computation is total, a finite prefix of the iteration suffices to compute
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the same value, which expresses a kind of compactness property:

seq : {A,B} (A→ L(B + A))→ N→ A→ L(B + A)
seq(f, 0)(a) = retL(inr(a))

seq(f, k + 1)(a) = bindL(f(a); [retL ◦ inl; seq(f, k)])
iter/trunc : {A,B, f, a, b, c} iter(f, a) = stepc(retL(b))→

∥Σk : N. seq(g, k)(a) = stepc(retL(inl(b)))∥

(3.5.1∗4) Characterizing cost bounds. Lastly, similar to the calf⋆ we require that
cost bounds are unique (3.4.1∗3). Moreover, we require that cost bounds are
decomposable in the following sense:

bind−1
L : {A,B, e, f, c, b} bindL(e; f) = stepc(retL(b))→
∥Σc1, c2 : C. Σa : A. e = stepc1(retL(a))×
f(a) = stepc2(retL(b))× (c = c1 + c2)∥

step−1
L : {A, c, c1, a} stepc1(e) = stepc(retL(a))→
∥Σc2 : C. e = stepc2(retL(a))× (c = c1 + c2)∥

For technical reasons the conclusions of the axiom in (3.5.1∗3) and the axioms above
have to be propositionally truncated [Uni13]. The decomposition of cost bounds
is necessary for proving computational adequacy of the denotational semantics we
define for MA. In contrast, because the STLC is a total language the analogue
of these axioms were not strictly necessary in calf⋆: one may state (cost-aware)
computational adequacy so that uniqueness of cost bounds is sufficient for the proof
of the fundamental theorem.

3.5.2. Cost-aware denotational semantics of MA.

(3.5.2∗1) In this section we define and study a denotational semantics for the
programming language MA. The plan remains the same as the one we outlined
in Section 3.4.2 for the STLC. For presentation purposes we do not go over every
detail of the construction and simply highlight the important ideas.

(3.5.2∗2) A characteristic feature of MA is the distinction between expressions,
which are meant to encode mathematical/pure computations, and commands, which
engender effects upon execution. In Fig. 3.2 we present a fragment of the static
semantics of MA. Observe that there are two mutually defined judgments reflecting
the expression/command distinction; note that in a addition to a context, both the
expression and command typing judgment is indexed by a signature that contains the
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Γ, x : A ⊢Σ x : A
Γ, x : A1 ⊢Σ e : A2

Γ ⊢Σ lam(x.e) : A1 ⇒ A2

Γ ⊢Σ e : A1 ⇒ A2 Γ ⊢Σ e1 : A1

Γ ⊢Σ ap(e, e1) : A2

Γ ⊢Σ m÷ A

Γ ⊢Σ cmd(m) : cmd(A)

Γ ⊢Σ a : A
Γ ⊢Σ ret(a) : cmd(A)

Γ ⊢Σ e : cmd(A) Γ, x : A ⊢Σ m÷B

Γ ⊢Σ bnd(e, x.m)÷B

Σ[n] = bool Γ ⊢Σ m÷ unit
Γ ⊢Σ while[n](m)÷ unit

Σ[n] = A

Γ ⊢Σ get[n]÷ A

Σ[n] = A Γ ⊢Σ e : A
Γ ⊢Σ set[n](e)÷ bool

Apos : pos(A) Γ ⊢Σ e : A Γ ⊢Σ,x∼A m÷ bool
Γ ⊢Σ dcl(e, x.m) : bool

Figure 3.2: Expressions and commands of MA.

assignables within the scope of the term. The passage from commands to expressions
is mediated by the cmd type constructor: a type such as cmd(A) classifies reified
commands computing a value of type A; the elimination form bnd(e, x.m) then
takes a reified command e and sequences it with a command m.

(3.5.2∗3) The call-by-value operational semantics of the expressions of MA is
defined as in the case for the STLC. The dynamics of commands is defined as a
relation on states consisting of pairs of commands and stores, which is a finite list of
values. For instance, the transition rule for the while command is defined as follows:

µ[n] = ff
(µ,while[n](m)) 7→cmd (µ, ret(⋆))

µ[n] = tt
(µ,while[n](m)) 7→cmd (µ, bnd(cmd(m),−.while[n](m)))

For the purposes of our case study, it is critical that the store contains only data of
base type, Correspondingly, one may only declare assignables of base type.2

2This may be seen from the typing rule for dcl among whose premises is the requirement that
the declared assignable has base type.
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(3.5.2∗4) Kripke denotational semantics of MA. One of the main challenges of
defining a denotational semantics for MA in comparison to the STLC is the
prescence of the store. To express the stability of the interpretation of programs
with respect to the allocation of assignables, we employ a Kripke style semantics in
the interpretation of function and command types:

J−KMA
Ty : TyMA → Sig→ tp+

JA1 ⇒ A2KMA
Ty (Σ) = U((Σ′ : Con)→ Σ′ ≥ Σ→ JA1KMA

Ty (Σ′)→ F(JA2KMA
Ty (Σ′)))

Jcmd(A)KMA
Ty (Σ) = U((Σ′ : Con)→ Σ′ ≥ Σ→ JΣ′KMA

Sig → L(JAKMA
Ty (Σ′)× JΣ′KMA

Sig ))

In the above we write Sig for the type of signatures and J−KMA
Sig : Sig→ tp+ for the

interpretation of signatures.3 Here Σ′ ≥ Σ is a preorder on signatures expressing
the passage between worlds, where a future (i.e. larger) world potentially contains
new allocations. Therefore a function f : A1 ⇒ A2 is semantically a family of
functions indexed by all future worlds, and similarly a command m : cmd(A) is a
family of store transformations that may be executed at all future worlds. Note
that because commands may produce divergent computations the codomain of this
transformation is a lifted type.

(3.5.2∗5) The semantics of expression and commands of MA follows directly from
the semantics of types. As an important case, let us look at the interpretion of
while loops:

Jwhile[n](m)KMA
Cmd(Σ′, p, γ′, σ′) = iter(g)(σ′) where

g : JΣ′KMA
Sig → L((1× JΣ′KMA

Sig ) + JΣ′KMA
Sig )

g(σ) with σ[n]
· · · | ff = step1(retL(inl(⋆, σ)))
· · · | tt = (−, σ′)←L JmKMA

Cmd(Σ′, p, γ′, σ); step2(ret(inr(σ′)))

In the above we have Γ ⊢Σ while[n](m)÷ unit. The inputs to the interpretation are
the future world Σ′ (with p : Σ′ ≥ Σ), the closing substitution for Γ relative to the
future world γ′, and a semantic store σ′. The interpretation simply iterates the
body of the loop while bookkeeping the associated costs.

(3.5.2∗6) Cost-aware computational adequacy for MA. The proof for cost-aware
adequacy is very similar to that of STLC. A particularly important distinction is

3If the signature is allowed to range over arbitrary types, then the interpretation of signatures
and types become circurlar; unraveling this mutual dependence would require much more complex
techniques. Because MA is restricted to first-order store we can break the circularity by defining
the interpretation of signatures first since they only contain base types.
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in the treatment of the lift of the logical relation to commands:

m cmdΣ,A(R) m = ∀σ, σ′ : JΣKMA
Sig , c : N, a : JAKMA

Ty (Σ).
m(σ) = stepc(retL(a, σ′))→
Πµ : Store(Σ)→ µ ∼Σ σ →
Σa : Pg(Σ, A), µ′ : Store(Σ).
(µ,m) ⇓η c¶E/cmd (µ

′, ret(a))× a R a× µ′ ∼Σ σ′

In the above Store(Σ) is the type of stores relative to a signature Σ, R is a relation
between closed values of type A relative to Σ (written Pg(Σ, A)) and JAKMA

Ty (Σ),
and cmdΣ,A lifts R to a relation between closed commands of type A relative to Σ
and functions of type JΣKMA

Sig → F(JAKMA
Ty (Σ)× JΣKMA

Sig ) (i.e. a semantic command).
The relation ⇓η c¶E/cmd is the phase-separated version of the evaluation relation for
commands obtained in a similar fashion to (3.2.3∗2).

Note that the lifted relation universally quantifies over the possible resulting
values of the semantic command m, whereas the lifting relation in (3.4.2∗3) uses
an existential quantification since such a value will always exist. This change is
propagated throughout the proof of the fundamental theorem: as mentioned in
(3.5.1∗4), while uniqueness of cost bounds is sufficient in the case of the STLC,
the universal quantification used in the lifting relation for MA commands makes it
so that we also need to be able to decompose cost bounds.

(3.5.2∗7) Following the recipe for the STLC, we obtain the following adequacy
theorems for MA:

Theorem 3.5.2∗7.1 (Cost-aware adequacy for MA). Let · ⊢· e : bool be a closed
boolean with no free assignables. If JeKMA

Exp = stepc(ret(b)), then we have e ⇓η c¶E
b.

Moreover, let · ⊢· m÷ bool be a closed boolean command with no free assignables.
If JmKMA

Cmd = stepc(ret((b, ⋆))), then we have (·,m) ⇓η c¶E/cmd (·, b).

Theorem 3.5.2∗7.2 (Extensional adequacy for MA). Suppose u : ¶E. Let · ⊢·
e : bool be a closed boolean with no free assignables. If JeKMA

Exp = ret(b), then we
have e ⇓ b. Moreover, let · ⊢· m÷ bool be a closed boolean command with no free
assignables. If JmKMA

Cmd = ret((b, ⋆)), then we have (·,m) ⇓cmd (·, b).

3.5.3. Models of calfω.

(3.5.3∗1) Models of calfω may be obtained by extending the models of calf⋆. The
lift operation is interpreted using a monad that models partiality; for concreteness
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and convenience we choose the quotient inductive-inductive partiality monad of
Altenkirch, Danielsson, and Kraus [ADK17]. Because the iteration operation in
MA may be seen as a continuous functional we may implement it as a fixed-point.

3.6. CASE STUDY: PCF

(3.6∗1) One of the primary features that distinguishes MA presented in Section 3.5
and PCF is general fixed-points. While the iteration mechanism of MA can be
defined as a fixed-point (and we define it this way in the model of calfω), the
converse does not hold. Therefore, to define a denotational semantics for PCF
in the same synthetic fashion as STLC and MA, I propose to extend calf⋆ by
axiomatizing the existence of fixed-points for endomaps between (the lifting of)
types of a universe of predomains. The resulting theory, dubbed calf∞, can then be
seen as an extension of calfω.

(3.6∗2) Before proposing the theory calf∞, I briefly describe the kind of models
that I have in mind. A natural option is to interpret calf∞ in a model of synthetic
domain theory (SDT). As the name suggests, SDT diverges from classic domain
theory in that one may construct maps of domains using ordinary (intuitionistic)
set-theoretic language without the burden of checking continuity conditions. More
details about SDT may be found in the references [FR97; Hyl91; Reu95; RS99].

(3.6∗3) A topos that models SDT is equipped with a class of “computational”
truth values Σ called a dominance that determines the lifting monad L that is used
to classify partial computations. The initial algebra ω and final coalgebra ω of L
then represent synthetic versions of the generic N-chain and N-chain equipped with
a point at infinity, respectively. One way to obtain a nice class of predomains is
via well complete types. We say a type A is complete when any ω-chain in A is
uniquely extended to an ω-chain. The class of predomains then consists of the well
complete types, which is any type A such that L(A) is complete. Classically, a
domain is a predomain with a least element; in the synthetic setting this corresponds
to equipping predomains with an L-algebra structure. Importantly, any endomap of
domains has a fixed-point.

(3.6∗4) Predomains enjoy a number of closure conditions, and one may choose
predomains so that they are closed under the type structures of PCF. Given the
considerations in (3.6∗3), we propose to axiomatize a universe of predomains in
calf∞ whose types support general recursion/partiality. Because we need to account
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for the cost of computations in predomains, we introduce a pair of universes:

PreDom+ : tp+

ElDom+ : tm+(PreDom+)→ tp+

PreDom⊖ : tp⊖

ElDom⊖ : tm⊖(PreDom⊖)→ tp⊖

At minimum we need to close predomains under natural numbers, lifting, and
functions. As an example, closure under lifting may be specified as follows:

L : tp+ → tp⊖

L̂ : tm+(PreDom+)→ tm⊖(PreDom⊖)
− : {Â} ElDom⊖(L̂(Â)) = L(ElDom+(Â))

General recursion is available for lifted predomains:

fix : {Â} U(U(L(ElDom+(Â)))→ L(ElDom+(Â)))→ L(ElDom+(Â))

3.6.1. Cost-aware denotational semantics of PCF.

(3.6.1∗1) Following the case studies in Sections 3.4 and 3.5, I propose to define
a denotational semantics for PCF in calf∞. As for the STLC and MA, I will
work with a call-by-value operational semantics (see Fig. 3.3). Write TyPCF and
TmPCF(Γ, A) for the type of PCF types and terms, respectively. Following the
standard call-by-push-value decomposition in predomains, types of PCF are inter-
preted as value predomains PreDom+ and terms are interpreted as elements of lifted
predomains:

J−KTy : TyPCF → ElDom+(PreDom+)
J−K : {Γ, A} TmPCF(Γ, A)→ JΓKTy → L(JAKTy)

(3.6.1∗2) I believe that cost-aware computational adequacy for PCF may be proved
using a logical relations proof as in the case for STLC and MA. Similar to the
truncation axiom for iteration (3.5.1∗3) for MA, it is expected that one needs
to axiomatize in calf∞ similar properties that hold of either classical or synthetic
domains to carry out the adequacy theorem.
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Γ, x : A1 → A2, y : A1 ⊢ e : A2

Γ ⊢ fun(x.y. e) : A1 → A2

Figure 3.3: Call-by-value PCF, selected typing rules.

3.6.2. Models of calf∞.

(3.6.2∗1) For the models of calf∞, the plan is to construct a version of the counting
model (see Section 2.2.10) in an SDT topos X. The interpretation of predomains and
lifting should resemble SDT-topos models of programming languages with recursion
[Sim99; Sim04] with modifications to account for the interaction of cost structure
and partiality. As for calfω, a good starting point for the interpretation of the
cost-aware lift monad is just the composition of the ordinary lifting monad with the
cost monad: L(A) ≜ Σ(p : Σ). p→ ( C× A). Naturally PreDom+ is interpreted as
predomains of X, and PreDom⊖ is interpreted as the type of algebras for the cost
monad valued in predomains. The required closure conditions on both should follow
from the properties of predomains.

(3.6.2∗2) An anticipated problem is the relationship between free computations
and computations in a predomain. In contrast to calfω, not all free computations
may be considered the computations of a predomain since predomains are not closed
under arbitrary types of calf . Although this should not pose a problem for studying
PCF, it would be good to understand this limitation in the context of calf∞ as a
general purpose programming language. For instance, how should one extend the
theory of cost bounds (see Section 2.2.6) to partial computations?

(3.6.2∗3) Instantiating the model construction. One way to obtain an SDT topos is
given in Sterling and Harper [SH22]. Here op. cit. first define a concrete category
C complying with axiomatic domain theory [Fio94] internal to a presheaf topos for
information flow, and then extend C to a model of SDT using an adaption of the
result of Fiore and Plotkin [FP96]. Because the counting model of calf is a simpler
version of the information flow topos, I expect that it would be possible to reuse
these results in the context of interpreting calf∞.

3.7. TIMELINE

(3.7∗1) I expect that the proposed work can be completed within one year. The
metatheory of calf and cost-aware denotational semantics of PCF may be broken
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down into the following tasks, both in order of perceived difficulty:

1. Axiomatize STC for calf and construct the computability algebra.

2. Construct an STC topos for canonicity and extract the computability result.

3. Give a complete definition of calf∞.

4. Construct an adequate denotational model of PCF in calf∞.

5. Interpret calf∞ using SDT.

6. Instantiate the model at a concrete SDT topos.
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.1. COMPLETE DEFINITION OF calf

tp+ : Jdg
tm+ : tp+ → Jdg

U : tp⊖ → tp+

F : tp+ → tp⊖

tm⊖(X) := tm+(U(X))
ret : (A : tp+, a : tm+(A))→ tm⊖(F(A))

bind : {A : tp+, X : tp⊖} tm⊖(F(A))→ (tm+(A)→ tm⊖(X))→ tm⊖(X)
tbind : {A : tp+}→ tm⊖(F(A))(tm+(A)→ tp⊖)→ tp⊖

dbind : {A : tp+, X : tm+(A)tp⊖} (e : tm⊖(F(A)))→ ((a : tm+(A))→ tm⊖(X(a)))→ tm⊖(tbind(e;X))

Figure .4: Core ∂cbpv calculus.

bind/ret : {A,X} (a : tm+(A))→ (f : tm+(A)→ tm⊖(X))→ bind(ret(a); f) = f(a)
tbind/ret : {A} (a : tm+(A))→ (f : tm+(A)→ tp⊖)→ tbind(ret(a); f) = f(a)
dbind/ret : {A,X} (a : tm+(A))→ (f : a : tm+(A)→ tm⊖(X(a)))→ dbind(ret(a); f) = f(a)

bind/assoc : {A,B,X} (e : tm⊖(F(A)))→
(f : tm+(A)→ tm⊖(F(B)))→ (g : tm+(B)→ tm⊖(C))→
bind(bind(e; f); g) = bind(e;λa. bind(f(a); g))

tbind/assoc : {A,B,X} (e : tm⊖(F(A)))→ (f : tm+(A)→ tm⊖(F(B)))→
tbind(bind(e; f);X) = tbind(e;λa. tbind(f(a);X))

Figure .5: Computation and associativity laws for sequencing.
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C : Jdg
0 : C
+ : C→ C→ C
≤ : C→ C→ Jdg

costMon : isCostMonoid(C, 0,+,≤)

Ĉ : tp⊖

(outC, inC) : tm⊖(Ĉ) ∼= C

≤̂ : Ĉ→ Ĉ→ tp⊖

(out≤, in≤) : {c, c′} tm⊖(c ≤̂ c′) ∼= (outC(c) ≤ outC(c′))

step : {X : tp⊖} C→ tm⊖(X)→ tm⊖(X)
step0 : {X, e} step0(e) = e

step+ : {X, e, c1, c2} stepc1(stepc2(e)) = stepc1+c2(e)

bindstep : {A,X, e, f, c} bind(stepc(e); f) = stepc(bind(e; f))
tbindstep : {A,X, e, f, c} tbind(stepc(e); f) = tbind(e; f)
dbindstep : {A,X, e, f, c} dbind(stepc(e); f) = stepc(dbind(e; f))

Figure .6: Cost structure and cost effect.
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¶E : Jdg
¶E/uni : {u, v : ¶E} u = v

extA := ¶E → A

step/¶E : {X, e, c} extstepc(e) = e

#+ : tp+ → tp+

_ : {A} tm+(#+A) ∼= #(tm+(A))

 : tp+ → tp+

η : tm+(A)→ tm+( A)
∗ : ¶E → tm+( A)
_ : Πa : tm+(A).Πu : ¶E. η (a) = ∗(u)

ind : {A} (a : tm+( A))→ (X : tm+( A)→ tp⊖)→
(x0 : (a : tm+(A))→ tm⊖(X(η (a))))→
(x1 : (u : ¶E)→ tm⊖(X(∗(u))))→
((a : tm+(A))→ (u : ¶E)→ x0(a) = x1(u))→
tm⊖(X(a))

ind /η : {A} (a : tm+(A))→ (X : tm+( A)→ tp⊖)→
(x0 : (a : tm+(A))→ tm⊖(X(η (a))))→
(x1 : (u : ¶E)→ tm⊖(X(∗(u))))→
(h : (a : tm+(A))→ (u : ¶E)→ x0(a) = x1(u))→
ind (η (a), X, x0, x1, h) = x0(a)

ind /∗ : {A} (u : ¶E)→ (X : tm+( A)→ tp⊖)→
(x0 : (a : tm+(A))→ tm⊖(X(η (a))))→
(x1 : (u : ¶E)→ tm⊖(X(∗(u))))→
(h : (a : tm+(A))→ (u : ¶E)→ x0(a) = x1(u))→
ind (∗(u), X, x0, x1, h) = x1(u)

Figure .7: Modal account of the phase distinction.
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Π : (A : tp+, X : tm+(A)→ tp⊖)→ tp⊖

(ap, lam) : {A,X} tm⊖(Π(A;X)) ∼= (a : tm+(A))→ tm⊖(X(a))

Σ++ : (A : tp+, B : tm+(A)→ tp+)→ tp+

(unpair++, pair++) : {A,B} tm+(Σ++(A;B)) ∼= Σ(tm+(A))(λa. tm+(B(a)))
Σ+− : (A : tp+, X : tm+(A)→ tp⊖)→ tp⊖

(unpair+−, pair+−) : {A,X} tm⊖(Σ+−(A;X)) ∼= Σ(tm+(A))(λa. tm⊖(X(a)))

eq : (A : tp+)→ tm+(A)→ tm+(A)→ tp+

self : {A} (a, b : tm+(A))→ a =tm+(A) b→ tm+(eqA(a, b))
ref : {A} (a, b : tm+(A))→ tm⊖(F(eqA(a, b)))→ a =tm+(A) b

uni : {A, a, b} (p, q : tm⊖(F(eqA(a, b))))→ #(p = q)

1 : tp+

⋆ : tm+(1)
η1 : {u, v} u =tm+(1) v

+ : tp+ → tp+ → tp+

inl : {A,B} tm+(A)→ tm+(A+B)
inr : {A,B} tm+(B)→ tm+(A+B)

case : {A,B} (s : tm+(A+B))→ (tm+(A+B)→ tp⊖)→
((a : tm+(A))→ tm⊖(X(inl(a))))→
((b : tm+(B))→ tm⊖(X(inl(b))))→ tm⊖(X(s))

caseinl : {A,B,X, e0, e1} (a : tm+(A))→ case(inl(a);X; e0; e1) = e0(a)
caseinr : {A,B,X, e0, e1} (b : tm+(B))→ case(inr(b);X; e0; e1) = e1(b)

nat : tp+

zero : tm+(nat)
suc : tm+(nat)→ tm+(nat)
rec : (n : tm+(nat))→ (X : tm+(nat)→ tp⊖)→ tm⊖(X(zero))→

((n : tm+(nat))→ tm⊖(X(n))→ tm⊖(X(suc(n))))→ tm⊖(X(n))
rec/zero : {X, e0, e1} rec(zero;X; e0; e1) = e0

rec/suc : {n,X, e0, e1} rec(suc(n);X; e0; e1) = e1(n)(rec(n;X; e0; e1))

Figure .8: Types
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L : C→ tp+ → tp+

nil : {c, A} Lc(A)
cons : {c, A} tm+(A)→ tm+(Lc(A))→ tm+(Lc(A))
rec : {c, A} (l : tm+(Lc(A)))→ (X : tm+(Lc(A))→ tp⊖)→

(tm⊖(X(nil)))→
((a : tm+(A))→ (l : tm+(Lc(A)))→ tm⊖(X(l))→ tm⊖(X(cons(a; l))))→
tm⊖(X(l))

rec/nil : {c, A,X, e0, e1} recL(nil;X; e0; e1) = e0

rec/cons : {c, A, a,X, e0, e1} (l : tm+(Lc(A)))→
recL(cons(a; l);X; e0; e1) = stepc(e1(a)(l)(recL(l;X; e0; e1)))

Figure .9: Types, continued

lamstep : {A,X, c} (f : (a : tm+(A))→ tm⊖(X(a)))→ stepc(lam(f)) = lam(stepc(f))
pair+−

step : {A,X, c} (e : Σ(tm+(A))(λa. tm⊖(X(a))))→ stepc(e) = (e · 1, stepc(e · 2))
casestep : {A,B,X, e0, e1, c} (s : tm+(A+B))→

stepc(case(s;X; e0; e1)) = case(s;X;λa. stepc(e0(a));λb. stepc(e1(b)))

Figure .10: Interaction of step with type structure.

& : {A,B : tp+} tm⊖(F(A))→ tm⊖(F(B))→ tm⊖(F(A×B))
&join : {A,B, c1, c2, a, b} (stepc1(ret(a))) & (stepc2(ret(b))) = stepc1⊗c2(ret((a, b)))

Figure .11: Parallelism.
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